首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  国内免费   2篇
  2022年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   7篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   10篇
  2003年   10篇
  2002年   3篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
71.
Inhibitor of apoptosis protein (IAP)-binding proteins such as Grim, Reaper and HID have been shown to exert a critical role in regulating caspase activity in species such as D. Melanogaster. However, a comparable role for the mammalian homologue of second mitochondrial-derived activator of caspase/direct IAP-binding protein with low pI (Smac/DIABLO) has yet to be clearly established in vivo. Despite tremendous interest in recent years in the use of so-called Smac mimetics to enhance chemotherapeutic potency, our understanding of the true physiologic nature of Smac/DIABLO in regulating programmed cell death (PCD) remains elusive. In order to critically evaluate the role of Smac/DIABLO in regulating mammalian PCD, deficiency of caspase-3 was used as a sensitizing mutation in order to reduce aggregate levels of executioner caspase activity. We observe that combinatorial deletion of Diablo and Casp3, but neither alone, results in perinatal lethality in mice. Consistent with this, examination of both intrinsic and extrinsic forms of PCD in lines of murine embryonic fibroblasts demonstrate that loss of Smac/DIABLO alters both caspase-dependent and caspase-independent intrinsic PCD. Comparative small interfering RNA inhibition studies of X-linked inhibitor of apoptosis, cellular inhibitor of apoptosis (cIAP)-1, cIAP-2, caspase-6 and -7 in both wild-type and Casp3/Diablo DKO mouse embryonic fibroblast lineages, supports a model in which Smac/DIABLO acts to enhance the early phase executioner caspase activity through the modulation of inhibitory interactions between specific IAP family members and executioner caspases-3 and -7.  相似文献   
72.
The inhibitors of apoptosis (IAP) proteins cIAP1 and cIAP2 have recently emerged as key ubiquitin-E3 ligases regulating innate immunity and cell survival. Much of our knowledge of these IAPs stems from studies using pharmacological inhibitors of IAPs, dubbed Smac mimetics (SMs). Although SMs stimulate auto-ubiquitylation and degradation of cIAPs, little is known about the molecular determinants through which SMs activate the E3 activities of cIAPs. In this study, we find that SM-induced rapid degradation of cIAPs requires binding to tumour necrosis factor (TNF) receptor-associated factor 2 (TRAF2). Moreover, our data reveal an unexpected difference between cIAP1 and cIAP2. Although SM-induced degradation of cIAP1 does not require cIAP2, degradation of cIAP2 critically depends on the presence of cIAP1. In addition, degradation of cIAP2 also requires the ability of the cIAP2 RING finger to dimerise and to bind to E2s. This has important implications because SM-mediated degradation of cIAP1 causes non-canonical activation of NF-κB, which results in the induction of cIAP2 gene expression. In the absence of cIAP1, de novo synthesised cIAP2 is resistant to the SM and suppresses TNFα killing. Furthermore, the cIAP2-MALT1 oncogene, which lacks cIAP2's RING, is resistant to SM treatment. The identification of mechanisms through which cancer cells resist SM treatment will help to improve combination therapies aimed at enhancing treatment response.  相似文献   
73.
XIAP (X-chromosome-linked inhibitor of apoptosis protein) is a central apoptosis regulator that blocks cell death by inhibiting caspase-3, caspase-7, and caspase-9 via binding interactions with the XIAP BIR2 and BIR3 domains (where BIR is baculovirus IAP repeat). Smac protein, in its dimeric form, effectively antagonizes XIAP by concurrently targeting both its BIR2 and BIR3 domains. Here we describe the development of highly sensitive homogeneous time-resolved fluorescence resonance energy transfer (HTRF) assays to measure binding affinities of potent bivalent peptidomimetic inhibitors of XIAP. Our results indicate that these assays can differentiate Smac-mimetic inhibitors with a wide range of binding affinities down to the picomolar range. Furthermore, we demonstrate the utility of these fluorescent tools for characterization of inhibitor off-rates, which as a crucial determinant of target engagement and cellular potency is another important parameter to guide optimization in a structure-based drug discovery effort. Our study also explores how increased inhibitor valency can lead to enhanced potency at multimeric proteins such as IAP.  相似文献   
74.
75.
In this report, we demonstrate that soleus muscle of spontaneously hypertensive rats (SHR) had significantly lower protein levels of apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) as well as significantly higher protein levels of second mitochondria-derived activator of caspase (Smac) and procaspase-8 compared to normotensive Wistar-Kyoto (WKY) rats. In addition, soleus muscle from hypertensive rats had significantly increased caspase-8 proteolytic enzyme activity as well as significantly elevated reactive oxygen species (ROS) generation and higher hydrogen peroxide (H2O2) content. There was no change in the protein levels of the antioxidant enzymes, catalase, copper-zinc superoxide dismutase (CuZnSOD), and manganese superoxide dismutase (MnSOD). Interestingly, ARC protein migrated at approximately 32 kDa in SHR but at 30 kDa in WKY rat muscle; possibly indicating a post-translational modification. These results demonstrate that soleus muscle of hypertensive rats display a pro-apoptotic phenotype and augmented ROS generation.  相似文献   
76.
77.
XIAP (X-chromosome-linked inhibitor of apoptosis protein) is an inhibitor of apoptosis by binding to and inhibition of caspase-3 and caspase-7 through its BIR2 domain and caspase-9 through its BIR3 domain. Smac (second mitochondria-derived activator of caspases) protein is an endogenous antagonist of XIAP. Smac forms a dimer and concurrently binds both the BIR2 and BIR3 domains in XIAP, functioning as a highly efficient and potent cellular inhibitor of XIAP. In this article, we have designed and synthesized a bivalent Smac-based ligand (Smac-1) and its fluorescent labeled analogue (Smac-1F) and characterized their interaction with different constructs of XIAP. Our study demonstrates that bivalent Smac-based ligands bind concurrently to both the BIR2 and BIR3 domains of XIAP and are more than 500 times more potent than the corresponding monovalent Smac-based ligands. Bivalent Smac-based ligands also function as much more potent antagonists of XIAP than do the corresponding monovalent Smac-based ligands in cell-free functional assays. Using Smac-1F and XIAP containing both BIR2 and BIR3 domains, we also developed and validated a new fluorescence polarization-based assay. Hence, our designed bivalent Smac-based peptides mimic the mode of dimeric Smac protein in their interaction with XIAP containing both BIR2 and BIR3 domains and achieve extremely high potency in binding and functional assays. Our study provides new insights into the mode of action of bivalent Smac ligands targeting XIAP and a basis for the design and development of cell-permeable, bivalent Smac mimetics.  相似文献   
78.
Caspases are thought to be important players in the execution process of apoptosis. Inhibitors of apoptosis (IAPs) are able to block caspases and therefore apoptosis. The fact that a subgroup of the IAP family inhibits active caspases implies that not each caspase activation necessarily leads to apoptosis. In such a scenario, however, processed and enzymically active caspases should somehow be removed. Indeed, IAP-caspase complexes covalently bind ubiquitin, resulting in degradation by the 26S proteasome. Following release from mitochondria, IAP antagonists (e.g. second mitochondrial activator of caspases (Smac)) inactivate IAPs. Moreover, although pro-apoptotic factors such as irradiation or anti-cancer drugs may release Smac from mitochondria in tumor cells, high cytoplasmic survivin and ML-IAP levels might be able to neutralize it and, consequently, IAPs would further be able to bind activated caspases. Here, we propose a simple mathematical model, describing the molecular interactions between Smac deactivators, Smac, IAPs, and caspase-3, including the requirements for both induction and prevention of apoptosis, respectively. In addition, we predict a novel mechanism of caspase-3 degradation that might be particularly relevant in long-living cells.  相似文献   
79.
Mammalian mitochondrial IAP binding proteins   总被引:24,自引:0,他引:24  
Four mitochondrial proteins have been identified that immunoprecipitate with the mammalian inhibitor of apoptosis (IAP) protein XIAP. Each of them interacts via a processed amino terminus that resembles those of the insect pro-apoptotic IAP binding proteins Grim, HID, Reaper, and Sickle. Two, Diablo/Smac and HrtA2/Omi, have been extensively characterized. Both Diablo and HtrA2 can bind to IAPs and promote apoptosis when over-expressed in transfected cells, but unlike the insect IAP antagonists, to date there is scant evidence that they are important regulators of apoptosis in more physiological circumstances.  相似文献   
80.
The X-linked inhibitor of apoptosis protein (XIAP) is a potent cellular inhibitor of apoptosis. Designing small-molecule inhibitors that target the BIR3 domain of XIAP, where Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI) and caspase-9 bind, is a promising strategy for inhibiting the antiapoptotic activity of XIAP and for overcoming apoptosis resistance of cancer cells mediated by XIAP. Herein, we report the development of a homogeneous high-throughput assay based on fluorescence polarization for measuring the binding affinities of small-molecule inhibitors to the BIR3 domain of XIAP. Among four fluorescent probes tested, a mutated N-terminal Smac peptide (AbuRPFK-(5-Fam)-NH(2)) showed the highest affinity (Kd =17.92 nM) and a large dynamic range (deltamP = 231 +/- 0.9), and was selected as the most suitable probe for the binding assay. The binding conditions (DMSO tolerance and stability) have been investigated. Under optimized conditions, a Z' factor of 0.88 was achieved in a 96-well format for high-throughput screening. It was found that the popular Cheng-Prusoff equation is invalid for the calculation of the competitive inhibition constants (Ki values) for inhibitors in the FP-based competitive binding assay conditions, and accordingly, a new mathematical equation was developed, validated, and used to compute the Ki values. An associated Web-based computer program was also developed for this task. Several known Smac peptides with high and low affinities have been evaluated under the assay conditions and the results obtained indicated that the FP-based competitive binding assay performs correctly as designed: it can quantitatively and accurately determine the binding affinities of Smac-based peptide inhibitors with a wide range of affinities, and is suitable for high-throughput screening of inhibitors binding to the XIAP BIR3 domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号