首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
  国内免费   2篇
  2022年   1篇
  2019年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   9篇
  2012年   1篇
  2011年   7篇
  2010年   8篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   10篇
  2003年   10篇
  2002年   3篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
51.
Mitochondrial outer-membrane permeabilization by pro-apoptotic Bcl-2 family members plays a crucial role in apoptosis induction. However, whether this directly causes the release of the different mitochondrial apoptogenic factors simultaneously is currently unknown. Here we report that in cells or with isolated mitochondria, pro-apoptotic Bcl-2 proteins cause the release of cytochrome c, Smac/Diablo and HtrA2/Omi but not endonuclease G (EndoG) and apoptosis-inducing factor (AIF). In cells treated with Bax/Bak-dependent pro-apoptotic drugs, neither the caspase inhibitor zVAD-fmk nor loss of Apaf-1 affected the efflux of cytochrome c, Smac/Diablo and HtrA2/Omi, but both prevented the release of EndoG and AIF. Our findings identify the mitochondrial response to pro-apoptotic stimuli as a selective process leading to a hierarchical ordering of the effectors involved in cell death induction. Moreover, as in Caenorhabditis elegans, EndoG and AIF act downstream of caspase activation. Thus EndoG and AIF seem to define a 'caspase-dependent' mitochondria-initiated apoptotic DNA degradation pathway that is conserved between mammals and nematodes.  相似文献   
52.
摘要 目的:探讨Smac基因调控Caspase-3表达对紫杉醇耐药肺腺癌细胞株生物活性及经典凋亡信号通路的作用机制。方法:取构建好的耐药A549细胞,将其分为A549细胞(LC)组、A549细胞+Smac-NC(SN)组、A549细胞+Smac抑制剂(SI)组、A549细胞+Smac激动剂(SM)组、A549细胞+Caspase-3-NC(CN)组、A549细胞+Caspase-3抑制剂(CI)组、A549细胞+Caspase-3激动剂(CM)组、A549细胞+Smac激动剂+Caspase-3激动剂(MM)组;Real-time PCR法检测正常肺上皮细胞及4种肺腺癌细胞系中Smac、Caspase-3表达水平,将阴性对照、Smac、Caspase-3类似物转染至紫杉醇耐药肺腺癌细胞株,MTT法检测细胞增殖,流式细胞仪检测细胞凋亡,免疫印迹法检测经典凋亡信号通路表达,并分析Smac与Caspase-3的相关性。结果:肺腺癌细胞系中的Smac、Caspase-3 mRNA表达量显著低于正常肺上皮细胞系BEAS-2B(P<0.05),其中A549的Smac、Caspase-3 mRNA值最小(P<0.05),因此选取其作为此次实验细胞;LC组与SN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与SN组相比,SI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与SI组相比,SM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);LC组与CN组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CN组相比,CI组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显降低(P<0.05),增殖率、Bcl-2表达明显升高(P<0.05),与CI组相比,CM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);SM组与CM组相比,细胞增殖率、凋亡率及Caspase-3、Bcl-2、Bax、Cyto-C蛋白表达基本无差异(P>0.05),与CM组相比,MM组细胞凋亡率及Caspase-3、Bax、Cyto-C蛋白表达明显升高(P<0.05),增殖率、Bcl-2表达明显降低(P<0.05);Smac与Caspase-3呈现正相关(r=0.470,P=0.002),组间具有显著差异。结论:Smac基因可显著改善紫杉醇耐药肺腺癌细胞株细胞生物活性,并激活经典凋亡信号通路,其作用机制可能与调控Caspase-3表达有关。  相似文献   
53.
Breast cancer is the most prevalent cancer in women. Despite improvements in treatment, the rate of breast cancer-related deaths is still high, and this issue needs further, accurate investigations. Although several treatment options are available, none of them are efficient for complete remission, particularly in advanced stages of the disease. It is known that cancerous cells have dysregulated apoptosis-related pathways, by which they can remain alive for a long time, expand freely, and escape from apoptosis-inducing drugs or antitumor immune responses. Therefore, modulation of apoptosis resistance in cancer cells may be an efficient strategy to overcome current problems faced in the development of immunotherapeutic approaches for the treatment of breast cancer. The inhibitors of apoptosis protein (IAPs) are important targets for cancer therapy because it has been shown that these molecules are overexpressed and highly active in various cancer cells and suppress apoptosis process in malignant cells by blockage of caspase proteins. There is evidence of Smac mimetics efficacy as a single agent; however, recent studies have indicated the efficacy of current anticancer immunotherapeutic approaches when combined with Smac mimetics, which are potent inhibitors of IAPs and synthesized mimicking Smac/Diablo molecules. In this review, we are going to discuss the efficacy of treatment of breast cancer by Smac mimetics alone or in combination with other therapeutics.  相似文献   
54.
Mitochondria play a pivotal role during stress-induced apoptosis as several proapoptotic proteins are released to the cytosol to activate caspases. Smac/DIABLO is one of the proapoptotic proteins released from the mitochondria and has been shown to inactivate IAPs. However, gene knockout studies in mice revealed a redundant role for Smac during development and cell death. By applying RNA interference-mediated loss of function approach, we demonstrate that Smac/DIABLO is required for the activation of effector but not initiator caspases during stress and receptor-mediated cell death in HeLa cells. Cells with reduced Smac resist apoptosis and retained clonogenicity. Our results suggest an obligatory role for Smac/DIABLO in these tumor cells during several pathways of apoptosis induction.  相似文献   
55.
Here we demonstrate that JNK3 can phosphorylate Smac. Smac phosphorylation attenuates its ability to activate apoptosome activity in HeLa S-100 cell lysates. Addition of the X-linked inhibitor of apoptosis protein (XIAP) to the S-100 markedly suppresses apoptosome activity, and this suppressive effect of XIAP is neutralized by adding unphosphorylated Smac, but not phosphorylated Smac. Furtherover, JNK3-mediated phosphorylation of Smac markedly attenuates the interaction between Smac and XIAP, as measured by BIACORE assays and non-denaturing gel shift assays. When JNK3 activity is down-regulated in etoposide-induced HeLa cells by transiently overexpressing a dominant negative version of JNK3 (DN-JNK3), the caspase-3 activity as well as PARP cleavages are markedly enhanced. And the interaction of Smac with XIAP also increases by down-regulating JNK3 activity under the same conditions. These results suggest that JNK3 activity can attenuate the progression of apoptosis through a novel mechanism of action, the down-regulation of interaction between Smac and XIAP.  相似文献   
56.
57.
卵巢恶性肿瘤是女性生殖系统三大恶性肿瘤之一,其发病率在女性生殖系统肿瘤中占第三位,而死亡率却高居首位。目前对于晚期卵巢癌(Ⅲ或Ⅳ期)多倾向于用新辅助化疗+肿瘤细胞减灭术+术后周期性化疗的治疗方法。但是,尽管多数患者在最初对化疗药物较敏感,但仍有60%~80%最终死于卵巢癌,这些患者大部分都对化疗药物产生了耐药性,在更换新的化疗方案初期是有效的,但最终仍会耐药。近年来,有关细胞凋亡抑制蛋白(cIAP,cellular inhibitors of apoptosis proteins)在卵巢癌复发耐药中的作用机制的研究越来越受到重视。研究证实,cIAP在耐药肿瘤细胞中呈高表达,并与多种因子共同参与形成了上皮性卵巢癌的耐药机制,抑制了化疗药物引起的肿瘤细胞的凋亡。这些发现为攻克卵巢癌的耐药机制提供了重要线索,也为卵巢癌化疗药物的应用指出了新的方向。  相似文献   
58.
We report the systematic rational design and synthesis of new monovalent Smac mimetics that bind preferentially to the BIR2 domain of the anti-apoptotic protein XIAP. Characterization of compounds in vitro (including 9i; ML101) led to the determination of key structural requirements for BIR2 binding affinity. Compounds 9h and 9j sensitized TRAIL-resistant breast cancer cells to apoptotic cell death, highlighting the value of these probe compounds as tools to investigate the biology of XIAP.  相似文献   
59.
Smac mimetic compounds (SMCs) are experimental small molecules that induce tumour necrosis factor alpha (TNFα)-dependent cancer cell death by targeting the inhibitor of apoptosis proteins. However, many cancer cell lines are resistant to SMC-mediated apoptosis despite the presence of TNFα. To add insight into the mechanism of SMC-resistance, we used functional siRNA-based kinomic and focused chemical screens and identified suppressor of morphogenesis in genitalia-1 (SMG1) and NF-κB-inducing kinase (NIK) as novel protective factors. Both SMG1 and NIK prevent SMC-mediated apoptosis likely by maintaining FLICE inhibitory protein (c-FLIP) levels to suppress caspase-8 activation. In SMC-resistant cells, the accumulation of NIK upon SMC treatment enhanced the activity of both the classical and alternative nuclear factor-κB pathways, and increased c-FLIP mRNA levels. In parallel, persistent SMG1 expression in SMC-resistant cells repressed SMC-mediated TNFα-induced JNK activation and c-FLIP levels were sustained. Importantly, SMC-resistance is overcome by depleting NIK and SMG1, which appear to facilitate the downregulation of c-FLIP in response to SMC and TNFα treatment, leading to caspase-8-dependent apoptosis. Collectively, these data show that SMG1 and NIK function as critical repressors of SMC-mediated apoptosis by potentially converging on the regulation of c-FLIP metabolism.  相似文献   
60.
Smac mimetics (SMs) comprise a class of small molecules that target members of the inhibitor of apoptosis family of pro-survival proteins, whose expression in cancer cells hinders the action of conventional chemotherapeutics. Herein, we describe the activity of SM83, a newly synthesised dimeric SM, in two cancer ascites models: athymic nude mice injected intraperitoneally with IGROV-1 human ovarian carcinoma cells and immunocompetent BALB/c mice injected with murine Meth A sarcoma cells. SM83 rapidly killed ascitic IGROV-1 and Meth A cells in vivo (prolonging mouse survival), but was ineffective against the same cells in vitro. IGROV-1 cells in nude mice were killed within the ascites by a non-apoptotic, tumour necrosis factor (TNF)-dependent mechanism. SM83 administration triggered a rapid inflammatory event characterised by host secretion of TNF, interleukin-1β and interferon-γ. This inflammatory response was associated with the reversion of the phenotype of tumour-associated macrophages from a pro-tumoural M2- to a pro-inflammatory M1-like state. SM83 treatment was also associated with a massive recruitment of neutrophils that, however, was not essential for the antitumoural activity of this compound. In BALB/c mice bearing Meth A ascites, SM83 treatment was in some cases curative, and these mice became resistant to a second injection of cancer cells, suggesting that they had developed an adaptive immune response. Altogether, these results indicate that, in vivo, SM83 modulates the immune system within the tumour microenvironment and, through its pro-inflammatory action, leads cancer cells to die by necrosis with the release of high-mobility group box-1. In conclusion, our work provides evidence that SMs could be more therapeutically active than expected by stimulating the immune system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号