首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78936篇
  免费   3275篇
  国内免费   7352篇
  2023年   695篇
  2022年   1101篇
  2021年   1425篇
  2020年   1520篇
  2019年   2831篇
  2018年   1815篇
  2017年   1518篇
  2016年   1937篇
  2015年   3058篇
  2014年   4002篇
  2013年   5454篇
  2012年   3434篇
  2011年   4800篇
  2010年   3488篇
  2009年   3552篇
  2008年   3771篇
  2007年   4012篇
  2006年   3641篇
  2005年   3176篇
  2004年   2647篇
  2003年   2329篇
  2002年   2031篇
  2001年   1656篇
  2000年   1457篇
  1999年   1439篇
  1998年   1332篇
  1997年   1163篇
  1996年   1042篇
  1995年   1264篇
  1994年   1177篇
  1993年   1123篇
  1992年   1146篇
  1991年   957篇
  1990年   876篇
  1989年   831篇
  1988年   830篇
  1987年   820篇
  1986年   534篇
  1985年   961篇
  1984年   1350篇
  1983年   965篇
  1982年   1315篇
  1981年   930篇
  1980年   935篇
  1979年   884篇
  1978年   511篇
  1977年   418篇
  1976年   340篇
  1975年   264篇
  1973年   264篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
261.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   
262.
To elucidate the position of the peptide bond in glutamyl-taurine this dipeptide was extracted from calf brain synaptic vesicles and subjected to paper electrophoresis. It was analyzed further in an automatic amino acid analyzer prior and subsequent to acid hydrolysis. Both alpha- and gamma-forms were found to be present in approximately equal amounts.  相似文献   
263.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
264.
The binding of [3H]dipyridamole ([3H]DPR) to guinea pig brain membranes is described and compared to that of [3H]nitrobenzylthioinosine ([3H]NBI). The binding of [3H]DPR is saturable, reversible, and specific with pharmacologic evidence indicating that this ligand is binding to the adenosine uptake site. Compared to [3H]NBI the binding of [3H]DPR is of higher capacity (Bmax = 208 +/- 16 fmol/mg protein for [3H]NBI and 530 +/- 40 fmol/mg protein for [3H]DPR) and lower affinity (KD = 0.35 +/- 0.02 nM for [3H]NBI and 7.6 +/- 0.7 nM for [3H]DPR). The adenosine uptake inhibitors are the most potent inhibitors of binding (Ki of 10(-8)-10(-7) M) whereas adenosine receptor ligands such as cyclohexyladenosine, 2-chloroadenosine, and various methylxanthines are several orders of magnitude less potent (Ki 10(-5)-10(-2). The inhibition of [3H]DPR binding by NBI is biphasic, with only 40% of binding being susceptible to inhibition of NBI concentrations less than 10(-5) M. The tissue distribution of [3H]DPR binding parallels that of [3H]NBI although in most cases significantly more sites are observed with [3H]DPR. Calcium channel blocking agents such as nifedipine, nimodipine, and verapamil are also inhibitors of [3H]DPR binding with potencies in the micromolar range. The data are consistent with [3H]DPR being a useful additional ligand for the adenosine uptake site and provide evidence that multiple uptake binding sites exist of which only about 40% are NBI-sensitive.  相似文献   
265.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   
266.
Tyrosine hydroxylase purified from rat pheochromocytoma was phosphorylated and activated by purified cyclic GMP-dependent protein kinase as well as by cyclic AMP-dependent protein kinase catalytic subunit. The extent of activation was correlated with the degree of phosphate incorporated into the enzyme. Comparable stoichiometric ratios (0.6 mol phosphate/mol tyrosine hydroxylase subunit) were obtained at maximal concentrations of either cyclic AMP-dependent or cyclic GMP-dependent protein kinases. The enzymes appeared to mediate the phosphorylation of the same residue based on the observation that incorporation was not increased when both enzymes were present. The major tryptic phosphopeptide obtained from tyrosine hydroxylase phosphorylated by each protein kinase exhibited an identical retention time following HPLC. The purified phosphopeptides also exhibited identical isoelectric points. These data provide support for the notion that the protein kinases are phosphorylating the same residue of tyrosine hydroxylase.  相似文献   
267.
Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.  相似文献   
268.
Rubrophilin, a unique brain specific polypeptide, was purified to apparent homogeneity from microsomal fractions of bovine brains. The peptide stains pink with Coomassie Brilliant Blue R-250 (C.I. No. 42660) under specific conditions, has an apparent Mr of 53,000, and is acidic with an apparent pI of 4.9. The purification involves initial solubilization of delipidated microsomes in sodium dodecyl sulfate, followed by ammonium sulfate fractionation, reversed ammonium sulfate gradient elution from diatomaceous earth, gel filtration on polyacrylamide (Biogel P-200), gradient elution chromatography from hydroxylapatite, and reverse-phase chromatography from phenyl-Sepharose. A yield of about 5 mg of rubrophilin was obtained from 9 g of microsomal proteins. Amino acid analysis shows that rubrophilin contains only nine amino acids with residues/mol as follows: alanine (102), glutamic acid (97), lysine (65), proline (55), aspartic acid (48), glycine (44), serine (37), threonine (35), and valine (10). Cysteine, methionine, tryptophan, tyrosine, isoleucine, phenylalanine, histidine, and arginine could not be detected. Relative rubrophilin content of vertebrate brains was as follows: mammals greater than birds greater than reptiles greater than fishes. It is present in mouse retina and human neuroblastoma cell cultures but could not be detected in octopus optic lobe or in cultured C-6 rat glioma cells.  相似文献   
269.
Phosphatidylinositol phosphodiesterase (PL-C) appears to be a key element in the adrenergic regulation of pineal cyclic AMP levels. In the present study, the rat pineal enzyme was characterized using exogenous [3H]phosphatidylinositol (0.5 mM) as substrate. Half the enzyme activity was found in the cytosolic fraction, but the highest specific concentration was associated with the membrane fraction. Two pH optima (5.5 and 7.5) of enzyme activity were observed for the membrane fraction but only one in the cytosol fraction (pH 5.5). Enzyme activity in both fractions was Ca2+ dependent. In the case of the membrane protein in pH 7.5, the enzyme activity was sensitive to changes in Ca2+ in the 10-100 nM range. Addition of an equimolar concentration of phosphatidylinositol 4-phosphate nearly completely inhibited the hydrolysis of [3H]phosphatidylinositol; other phospholipids (1.0 mM) were less potent. This may reflect our present finding that [3H]phosphatidylinositol 4-phosphate is a better substrate than [3H]phosphatidylinositol for the enzyme. Stimulus deprivation (2 weeks of constant light or superior cervical ganglionectomy) reduced the cytosolic activity by 30% and had no effect on the membrane-associated enzyme.  相似文献   
270.
The nitrendipine receptor associated with the voltage-dependent calcium channel in rat brain was solubilized by detergent extraction and sonication. The detergent solution used for extraction consisted of 10 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 0.25% (wt/vol) polyoxyethylene 20 cetyl ether (Brij 58), and 0.025% (wt/vol) polyoxyethylene 17 cetyl stearyl ether (Lubrol WX) in the presence of 30% (wt/vol) glycerol as a stabilizer. The molecular weight of the receptor was estimated to be 1,800K by Sephacryl S-500 gel filtration and 800K by sucrose density gradient sedimentation. The equilibrium dissociation constant of [3H]nitrendipine to the solubilized receptors was 5.6 nM, which is approximately 10 times that of the membrane-bound receptor. The binding of nitrendipine to the receptor was inhibited noncompetitively by the structurally unrelated calcium channel inhibitors verapamil and prenylamine; their concentrations for 50% inhibition were both 1.0 X 10(-7) M, and they caused maximal inhibitions of 70 and 100%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号