全文获取类型
收费全文 | 1271篇 |
免费 | 27篇 |
国内免费 | 9篇 |
专业分类
1307篇 |
出版年
2022年 | 19篇 |
2021年 | 25篇 |
2020年 | 24篇 |
2019年 | 24篇 |
2018年 | 24篇 |
2017年 | 25篇 |
2016年 | 11篇 |
2015年 | 34篇 |
2014年 | 71篇 |
2013年 | 70篇 |
2012年 | 50篇 |
2011年 | 96篇 |
2010年 | 85篇 |
2009年 | 58篇 |
2008年 | 63篇 |
2007年 | 51篇 |
2006年 | 58篇 |
2005年 | 44篇 |
2004年 | 57篇 |
2003年 | 37篇 |
2002年 | 22篇 |
2001年 | 5篇 |
2000年 | 9篇 |
1999年 | 24篇 |
1998年 | 11篇 |
1997年 | 13篇 |
1996年 | 12篇 |
1995年 | 15篇 |
1994年 | 23篇 |
1993年 | 20篇 |
1992年 | 16篇 |
1991年 | 13篇 |
1990年 | 11篇 |
1989年 | 15篇 |
1988年 | 13篇 |
1987年 | 17篇 |
1986年 | 16篇 |
1985年 | 6篇 |
1984年 | 10篇 |
1983年 | 10篇 |
1982年 | 20篇 |
1981年 | 10篇 |
1980年 | 12篇 |
1979年 | 12篇 |
1978年 | 10篇 |
1977年 | 6篇 |
1976年 | 7篇 |
1975年 | 3篇 |
1973年 | 8篇 |
1971年 | 3篇 |
排序方式: 共有1307条查询结果,搜索用时 15 毫秒
51.
Shuo-wen Chang Toshinori Yoshihara Shuichi Machida Hisashi Naito 《Biochemistry and Biophysics Reports》2017
Intracellular signaling exhibits circadian variation in the suprachiasmatic nucleus and liver. However, it is unclear whether circadian regulation also extends to intracellular signaling pathways in the cardiac and skeletal muscles. Here, we examined circadian variation in the intracellular mammalian target of rapamycin (mTOR)/70 kDa ribosomal protein S6 kinase 1 (p70S6K) and extracellular signal-regulated kinase (ERK) pathways, which regulate protein synthesis in rat cardiac and skeletal muscles. Seven-week-old male Wistar rats were assigned to six groups: Zeitgeber time (ZT) 2, ZT6, ZT10, ZT14, ZT18, and ZT22 (ZT0, lights on; ZT12, lights off). The cardiac, plantaris, and soleus muscles were removed after a 12-h fasting period, and signal transducers involved in protein synthesis (mTOR, p70S6K, and ERK) were analyzed by western blotting. Circadian rhythms of signal transducers were observed in both cardiac (mTOR, p70S6K, and ERK) and plantaris (p70S6K and ERK) muscles (p<0.05), but not in the soleus muscle. In the cardiac muscle, the phosphorylation rate of mTOR was significantly higher at ZT6 (peak) than at ZT18 (bottom), and the phosphorylation rate of p70S6K was significantly higher at ZT2 (peak) than at ZT18 (bottom). In contrast, in the plantaris muscle, the phosphorylation rate of ERK was significantly lower at ZT2 (bottom) than at ZT18 (peak). Our data suggested that protein synthesis via mTOR/p70S6K and ERK signaling molecules exhibits circadian variation in rat cardiac and fast-type plantaris muscles. 相似文献
52.
Linnane AW Kopsidas G Zhang C Yarovaya N Kovalenko S Papakostopoulos P Eastwood H Graves S Richardson M 《Free radical research》2002,36(4):445-453
In this paper, we report results obtained from a continuing clinical trial on the effect of coenzyme Q 10 (CoQ 10 ) administration on human vastus lateralis (quadriceps) skeletal muscle. Muscle samples, obtained from aged individuals receiving placebo or CoQ 10 supplementation (300 mg per day for four weeks prior to hip replacement surgery) were analysed for changes in gene and protein expression and in muscle fibre type composition. Microarray analysis (Affymetrix U95A human oligonucleotide array) using a change in gene expression of 1.8-fold or greater as a cutoff point, demonstrated that a total of 115 genes were differentially expressed in six subject comparisons. In the CoQ 10 -treated subjects, 47 genes were up-regulated and 68 down-regulated in comparison with placebo-treated subjects. Restriction fragment differential display analysis showed that over 600 fragments were differentially expressed using a 2.0-fold or greater change in expression as a cutoff point. Proteome analysis revealed that, of the high abundance muscle proteins detected (2086 ±115), the expression of 174 proteins was induced by CoQ 10 while 77 proteins were repressed by CoQ 10 supplementation. Muscle fibre types were also affected by CoQ 10 treatment; CoQ 10 -treated individuals showed a lower proportion of type I (slow twitch) fibres and a higher proportion of type IIb (fast twitch) fibres, compared to age-matched placebo-treated subjects. The data suggests that CoQ 10 treatment can act to influence the fibre type composition towards the fibre type profile generally found in younger individuals. Our results led us to the conclusion that coenzyme Q 10 is a gene regulator and consequently has wide-ranging effects on over-all tissue metabolism. We develop a comprehensive hypothesis that CoQ 10 plays a major role in the determination of membrane potential of many, if not all, sub-cellular membrane systems and that H 2 O 2 arising from the activities of CoQ 10 acts as a second messenger for the modulation of gene expression and cellular metabolism. 相似文献
53.
Janet S. Russell Hongwu Chi Laura E. Lantry Ralph E. Stephens Patrick E. Ward 《Peptides》1996,17(8):1397-1403
A recent study determined that cultured human skeletal muscle adult myoblasts, myotubes, and fibroblasts degraded angiotensins and kinins via neutral endopeptidase-24.11 (NEP-24.11; EC 3.4.24.11) and aminopeptidase N (APN; EC 3.4.11.2). Due to the possible importance of other peptides to skeletal muscle blood flow and function, the present study looked specifically at the metabolism of the neurokinins substance P (SP) and neurokinin A (NKA) by skeletal muscle peptidases. The results show that SP is degraded not only by NEP-24.11, but also sequentially by dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5)/APN. NKA is unaffected by DAP IV but is metabolized by NEP-24.11 and APN. NEP-24.11 was inhibited by phosphoramidon (IC50 = 80 nM), thiorphan and ZINCOV, DAP IV by diprotin A (IC50 = 8 μM), and APN by amastatin (IC50 = 50 nM) and bestatin (IC50 = 100 μM). Skeletal muscle myocyte and fibroblast metabolism of SP and NKA may regulate local skeletal muscle vascular and extravascular functions including SP- and NKA-mediated nerve-induced vasodilation. Inhibition of both NEP-24.11 and DAP IV/APN may increase skeletal muscle blood flow and decrease peripheral vascular resistance via potentiation of local neurokinin levels. 相似文献
54.
Renata L. S. Goncalves Casey L. Quinlan Irina V. Perevoshchikova Martin Hey-Mogensen Martin D. Brand 《The Journal of biological chemistry》2015,290(1):209-227
The sites and rates of mitochondrial production of superoxide and H2O2in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2in vivo. 相似文献
55.
Tie2Cre-mediated inactivation of plexinD1 results in congenital heart, vascular and skeletal defects
Zhang Y Singh MK Degenhardt KR Lu MM Bennett J Yoshida Y Epstein JA 《Developmental biology》2009,325(1):82-2123
PlexinD1 is a membrane-bound receptor that mediates signals derived from class 3 secreted semaphorins. Although semaphorin signaling in axon guidance in the nervous system has been extensively studied, functions outside the nervous system including important roles in vascular patterning have also been demonstrated. Inactivation of plexinD1 leads to neo-natal lethality, structural defects of the cardiac outflow tract, peripheral vascular abnormalities, and axial skeletal morphogenesis defects. PlexinD1 is expressed by vascular endothelial cells, but additional domains of expression have also been demonstrated including in lymphocytes, osteoblasts, neural crest and the central nervous system. Hence, the cell-type specific functions of plexinD1 have remained unclear. Here, we describe the results of tissue-specific gene inactivation of plexinD1 in Tie2 expressing precursors, which recapitulates the null phenotype with respect to congenital heart, vascular, and skeletal abnormalities resulting in neonatal lethality. Interestingly, these mutants also have myocardial defects not previously reported. In addition, we demonstrate functions for plexinD1 in post-natal retinal vasculogenesis and adult angiogenesis through the use of inducible cre-mediated deletion. These results demonstrate an important role for PlexinD1 in embryonic and adult vasculature. 相似文献
56.
Transient dephosphorylation of FAK at Tyr-397 is required for cell cycle withdrawal early on during myogenesis. Here, we show that upon serum starvation of C2C12 myoblasts, FAK is transiently dephosphorylated in parallel with SHP-2 activation and association with FAK. SHP-2 knockdown by RNA interference suppressed the transient upregulation of SHP-2 and dephosphorylation of FAK during myogenesis. Furthermore, depletion of SHP-2 retarded the cell cycle withdrawal and the differentiation of serum-starved myoblasts into myotubes. These data provide a mechanistic basis for the reduction in FAK activity in differentiating myoblasts, indicating that myogenesis is critically triggered by FAK/SHP-2 complex.
Structured summary
MINT-7258938: Fak1 (uniprotkb:P34152) physically interacts (MI:0915) with shp2 (uniprotkb:P35235) by anti bait coimmunoprecipitation (MI:0006) 相似文献57.
R. Barrett-Jolley A. Comtois N.W. Davies P.R. Stanfield N.B. Standen 《The Journal of membrane biology》1996,152(2):111-116
We investigated the action of adenosine and GTP on KATP channels, using inside-out patch clamp recordings from dissociated single fibers of rat flexor digitorum brevis (FDB) skeletal
muscle. In excised patches, KATP channels could be activated by a combination of an extracellular adenosine agonist and intracellular Mg2+-ATP and GTP or GTP-γ-S. The activation required hydrolyzable ATP and could be partially reversed with Mg2+, suggesting that it may involve a G-protein dependent phosphorylation of KATP channels. We found that KATP channels of the rat FDB could not be activated by Mg2+-ATP alone or by Mg2+-ATP in the presence of extracellular adenosine. Patches whose channel activity had been `rundown' by Ca2+ could not be recovered by adenosine, GTP or Mg2+-ATP. KATP channels activated by adenosine receptor agonists had a similar ATP sensitivity to those under control conditions; but adenosine
appears to be able to switch these KATP channels from an inactive to an active mode.
Received: 29 December 1995/Revised: 22 March 1996 相似文献
58.
Jonathan P. Belman Rachel R. Bian Estifanos N. Habtemichael Don T. Li Michael J. Jurczak Abel Alcázar-Román Leah J. McNally Gerald I. Shulman Jonathan S. Bogan 《The Journal of biological chemistry》2015,290(7):4447-4463
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake. 相似文献
59.
MacArthur BD Tare RS Murawski K Oreffo RO 《Biochemical and biophysical research communications》2008,377(1):68-72
Stem cell differentiation is controlled intrinsically by dynamic networks of interacting lineage-specifying and multipotency genes. However, the relationship between internal genetic dynamics and extrinsic regulation of internal dynamics is complex and, in the case of skeletal progenitor cell differentiation, incompletely understood. In this study we elucidate a set of candidate markers of multipotency in human skeletal progenitor cells by systematic study of the relationships between gene expression and environmental stimulus. We used full genome cDNA microarrays to explore gene expression profiles in skeletal progenitor enriched populations derived from adult human bone marrow, minimally cultured in basal, osteogenic, chondrogenic, and adipogenic lineage-specifying culture conditions. We then used a variety of statistical clustering procedures to identify a small subset of genes which are related to these stromal lineages but are specific to none. For a selection of 11 key genes, conclusions of the microarray study were confirmed using quantitative real-time PCR. 相似文献
60.