首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1145篇
  免费   13篇
  国内免费   6篇
  2022年   13篇
  2021年   21篇
  2020年   20篇
  2019年   21篇
  2018年   17篇
  2017年   17篇
  2016年   8篇
  2015年   33篇
  2014年   69篇
  2013年   65篇
  2012年   47篇
  2011年   89篇
  2010年   83篇
  2009年   46篇
  2008年   53篇
  2007年   48篇
  2006年   48篇
  2005年   36篇
  2004年   54篇
  2003年   34篇
  2002年   18篇
  2001年   3篇
  2000年   8篇
  1999年   22篇
  1998年   10篇
  1997年   8篇
  1996年   12篇
  1995年   14篇
  1994年   20篇
  1993年   15篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   13篇
  1988年   13篇
  1987年   13篇
  1986年   14篇
  1985年   6篇
  1984年   9篇
  1983年   9篇
  1982年   19篇
  1981年   10篇
  1980年   12篇
  1979年   12篇
  1978年   9篇
  1977年   6篇
  1976年   7篇
  1975年   3篇
  1973年   8篇
  1971年   3篇
排序方式: 共有1164条查询结果,搜索用时 265 毫秒
91.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.  相似文献   
92.
Patients with chronic obstructive pulmonary disease, acute lung injury, and critical care illness may develop hypercapnia. Many of these patients often have muscle dysfunction which increases morbidity and impairs their quality of life. Here, we investigated whether hypercapnia leads to skeletal muscle atrophy. Mice exposed to high CO2 had decreased skeletal muscle wet weight, fiber diameter, and strength. Cultured myotubes exposed to high CO2 had reduced fiber diameter, protein/DNA ratios, and anabolic capacity. High CO2 induced the expression of MuRF1 in vivo and in vitro, whereas MuRF1−/− mice exposed to high CO2 did not develop muscle atrophy. AMP-activated kinase (AMPK), a metabolic sensor, was activated in myotubes exposed to high CO2, and loss-of-function studies showed that the AMPKα2 isoform is necessary for muscle-specific ring finger protein 1 (MuRF1) up-regulation and myofiber size reduction. High CO2 induced AMPKα2 activation, triggering the phosphorylation and nuclear translocation of FoxO3a, and leading to an increase in MuRF1 expression and myotube atrophy. Accordingly, we provide evidence that high CO2 activates skeletal muscle atrophy via AMPKα2-FoxO3a-MuRF1, which is of biological and potentially clinical significance in patients with lung diseases and hypercapnia.  相似文献   
93.
Insulin causes the exocytic translocation of GLUT4 glucose transporters to stimulate glucose uptake in fat and muscle. Previous results support a model in which TUG traps GLUT4 in intracellular, insulin-responsive vesicles termed GLUT4 storage vesicles (GSVs). Insulin triggers TUG cleavage to release the GSVs; GLUT4 then recycles through endosomes during ongoing insulin exposure. The TUG C terminus binds a GSV anchoring site comprising Golgin-160 and possibly other proteins. Here, we report that the TUG C terminus is acetylated. The TUG C-terminal peptide bound the Golgin-160-associated protein, ACBD3 (acyl-CoA-binding domain-containing 3), and acetylation reduced binding of TUG to ACBD3 but not to Golgin-160. Mutation of the acetylated residues impaired insulin-responsive GLUT4 trafficking in 3T3-L1 adipocytes. ACBD3 overexpression enhanced the translocation of GSV cargos, GLUT4 and insulin-regulated aminopeptidase (IRAP), and ACBD3 was required for intracellular retention of these cargos in unstimulated cells. Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, bound TUG and deacetylated the TUG peptide. SIRT2 overexpression reduced TUG acetylation and redistributed GLUT4 and IRAP to the plasma membrane in 3T3-L1 adipocytes. Mutation of the acetylated residues in TUG abrogated these effects. In mice, SIRT2 deletion increased TUG acetylation and proteolytic processing. During glucose tolerance tests, glucose disposal was enhanced in SIRT2 knock-out mice, compared with wild type controls, without any effect on insulin concentrations. Together, these data support a model in which TUG acetylation modulates its interaction with Golgi matrix proteins and is regulated by SIRT2. Moreover, acetylation of TUG enhances its function to trap GSVs within unstimulated cells and enhances insulin-stimulated glucose uptake.  相似文献   
94.
Hepatocyte growth factor (HGF) and its receptor, Met, regulate skeletal muscle differentiation. In the present study, we identified a novel alternatively spliced isoform of Met lacking exon 13 (designated Δ13Met), which is expressed mainly in human skeletal muscle. Alternative splicing yielded a truncated Met having extracellular domain only, suggesting an inhibitory role. Indeed, Δ13Met expression led to a decrease in HGF-induced tyrosine phosphorylation of Met and ERK phosphorylation, as well as cell proliferation and migration via sequestration of HGF. Interestingly, in human primary myoblasts undergoing differentiation, Δ13Met mRNA and protein levels were rapidly increased, concomitantly with a decrease in wild type Met mRNA and protein. Inhibition of Δ13Met with siRNA led to a decreased differentiation, whereas its overexpression potentiated differentiation of human primary myoblasts. Furthermore, in notexin-induced mouse injury model, exogenous Δ13Met expression enhanced regeneration of skeletal muscle, further confirming a stimulatory role of the isoform in muscle cell differentiation. In summary, we identified a novel alternatively spliced inhibitory isoform of Met that stimulates muscle cell differentiation, which confers a new means to control muscle differentiation and/or regeneration.  相似文献   
95.
The correlations between skeletal parameters (bulk density, micro-density and porosity), coral age and sea surface temperature were assessed along a latitudinal gradient in the zooxanthellate coral Balanophyllia europaea and in the azooxanthellate coral Leptopsammia pruvoti. In both coral species, the variation of bulk density was more influenced by the variation of porosity than of micro-density. With increasing polyp age, B. europaea formed denser and less porous skeletons while L. pruvoti showed the opposite trend, becoming less dense and more porous. B. europaea skeletons were generally less porous (more dense) than those of L. pruvoti, probably as a consequence of the different habitats colonized by the two species. Increasing temperature had a negative impact on the zooxanthellate species, leading to an increase of porosity. In contrast, micro-density increased with temperature in the azooxanthellate species. It is hypothesized that the increase in porosity with increasing temperatures observed in B. europaea could depend on an attenuation of calcification due to an inhibition of the photosynthetic process at elevated temperatures, while the azooxanthellate species appears more resistant to variations of temperature, highlighting possible differences in the sensitivity/tolerance of these two coral species to temperature changes in face of global climate change.  相似文献   
96.
Rodents are able to lower fatty acid utilization in liver and muscle during lactation in order to spare fatty acids for the production of milk triacylglycerols, an effect which is mediated by a down-regulation of peroxisome proliferator-activated receptor α (PPARα). The present study was performed to investigate whether similar fatty acid sparing effects are developing in lactating sows. We considered PPARα and its target genes involved in fatty acid utilization in biopsy samples from muscle and adipose tissue of lactating compared to non-lactating sows. In muscle, PPARα target genes involved in fatty acid utilization were up-regulated during lactation indicating that the fatty acid utilization in muscle was increased. Activation of PPARα was probably due to increased concentrations of non-esterified fatty acids in plasma observed in the lactating sows. In contrast to muscle, PPARα and its target genes involved in β-oxidation in white adipose tissue were down-regulated in early lactation. Overall, the present study shows that sows, unlike rats, are not able to reduce the fatty acid utilization in muscle in order to spare fatty acids for milk production. However, fatty acid oxidation in adipose tissue is lowered during early lactation, an effect that might be helpful to conserve fatty acids released from adipose tissue for the delivery into other tissues, including mammary gland, via the blood.  相似文献   
97.
Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.  相似文献   
98.
One of the main constrains for commercial aquaculture production of white seabream (Diplodus sargus) is the high incidence of skeletal malformations in reared fish. The purpose of this study was to obtain a better understanding of the mechanisms involved in the development of these types of skeletal malformations by comparative proteomic analysis of the vertebral column of normal and deformed fish using 2DE for protein separation and MS for protein identification. We observed a 3.2 and 3.4-fold increase in the expression of two tropomyosin isoforms, one of which (tropomyosin-4) is essential for the motility and polarization cycles of osteoclasts. Furthermore, a 1.6, 1.7 and 1.8-fold increase in three parvalbumin spots was detected, suggesting a cellular response to increased intracellular Ca2+ levels. These results can be interpreted as signs of increased cellular activity in the bone of white seabream with skeletal deformities coupled to a higher degree of calcium mobilization, which elicits further studies into the use of these proteins as indicators of skeletal metabolic state.  相似文献   
99.
The actions of the ciliary neurotrophic factor (CNTF) were assessed on adult mouse skeletal muscle L-type Ca2+ currents and on Ca2+ release from sarcoplasmic reticulum. Currents were measured with the whole cell patch clamp technique. Ca2+ signals in response to single action potentials were recorded with Fluo3-AM. CNTF (20 ng/ml) reversibly reduced the amplitude of Ca2+ channel currents by 50% within 15 min. In addition, CNTF greatly increased the rate of inactivation during depolarizing pulses and shifted the steady state inactivation curve by -12 mV. The effects of CNTF were mimicked by the PKC activator PMA and prevented by the PKC-inhibitor chelerythrine. In contrast to the effects on the Ca2+ conductance, charge movement and Ca2+ signals remained unaffected by CNTF. These results suggest that CNTF can rapidly decrease muscle Ca2+ channel currents by promoting inactivation, probably through an intracellular PKC-dependent mechanism.  相似文献   
100.
Rat cytosolic sialidase is expressed at elevated levels in skeletal muscle and is believed to play a role in the myogenic differentiation of muscle cells. Here, we observed varying levels of enhancement of sialidase activity in the presence a range of divalent cations. In particular, a significant enhancement of activity was observed in the presence of Ca2+. Conversely, inhibition of the sialidase activity was found when the enzyme was incubated in the presence of Cu2+, EDTA, and a range of carbohydrate-based inhibitors. Finally, an investigation of the enzymatic hydrolysis of a synthetic substrate, 4-methylumbelliferyl N-acetyl-alpha-D-neuraminide, by 1H NMR spectroscopy revealed that the reaction catalysed by rat skeletal muscle cytosolic sialidase proceeds with overall retention of anomeric configuration. This result further supports the notion that all sialidases appear to be retaining enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号