首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1145篇
  免费   13篇
  国内免费   6篇
  2022年   13篇
  2021年   21篇
  2020年   20篇
  2019年   21篇
  2018年   17篇
  2017年   17篇
  2016年   8篇
  2015年   33篇
  2014年   69篇
  2013年   65篇
  2012年   47篇
  2011年   89篇
  2010年   83篇
  2009年   46篇
  2008年   53篇
  2007年   48篇
  2006年   48篇
  2005年   36篇
  2004年   54篇
  2003年   34篇
  2002年   18篇
  2001年   3篇
  2000年   8篇
  1999年   22篇
  1998年   10篇
  1997年   8篇
  1996年   12篇
  1995年   14篇
  1994年   20篇
  1993年   15篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   13篇
  1988年   13篇
  1987年   13篇
  1986年   14篇
  1985年   6篇
  1984年   9篇
  1983年   9篇
  1982年   19篇
  1981年   10篇
  1980年   12篇
  1979年   12篇
  1978年   9篇
  1977年   6篇
  1976年   7篇
  1975年   3篇
  1973年   8篇
  1971年   3篇
排序方式: 共有1164条查询结果,搜索用时 31 毫秒
101.
The onset and progression of skeletal muscle regeneration are controlled by a complex set of interactions between muscle precursor cells and their environment. Decorin is the main proteoglycan present in the extracellular matrix (ECM) of adult muscle while biglycan expression is lower, but both are increased in mdx mice dystrophic muscle. Both of these small leucine-rich proteoglycans (SLRPs) can bind other matrix proteins and to the three TGF-beta isoforms, acting as modulators of their biological activity. We evaluated biglycan and decorin expression in skeletal muscle during barium chloride-induced skeletal muscle regeneration in mice. A transient and dramatic up-regulation of biglycan was associated with newly formed myotubes, whereas decorin presented only minor variations. Studies both in vitro and in intact developing newborn mice showed that biglycan expression is initially high and then decreases during skeletal muscle differentiation and maturation. To further evaluate the role of biglycan during the regenerative process, skeletal muscle regeneration was studied in biglycan-null mice. Skeletal muscle maintains its regenerative capacity in the absence of biglycan, but a delay in regenerated fiber growth and a decreased expression of embryonic myosin were observed despite to normal expression of MyoD and myogenin. Transient up-regulation of decorin during muscle regeneration in these mice may possibly obscure further roles of SLRPs in this process.  相似文献   
102.
We examined the expression and function of a gene we previously cloned from its downregulation in a muscle atrophy model. The encoded protein was named myodulin because of sequence homologies with the cartilage-specific chondromodulin-I (ChM-I) protein, its restricted expression in skeletal muscle tissue, and its modulating properties on vascular endothelial cells described here. We investigated the expression of myodulin in muscle fibers and cultured muscle cells. Myodulin RNA messengers were found in muscle fibers and their tendon extensions. Overexpression of myodulin fused to a FLAG peptide showed evidence of a muscle cell surface protein. Myodulin functions were assessed from similarities with chondromodulin-I. Coculture experiments using C(2)C(12) mouse myoblasts or myotubes, which stably overexpress myodulin, with H5V mouse cardiac vascular endothelial cells revealed that myodulin had a very active role in the invasive action of endothelial cells, without any evidence of extracellular myodulin secretion. Our results suggest that myodulin may be a muscle angiogenic factor operating through direct cell-to-cell interactions. This role is consistent with the correlation between modulations in myodulin expression and modifications in muscle microvascularization associated with activity-dependent muscle mass variations.  相似文献   
103.
IGF-1 induces human myotube hypertrophy by increasing cell recruitment   总被引:1,自引:0,他引:1  
Insulin-like growth factor-1 (IGF-1) has been shown in rodents (i) in vivo to induce muscle fiber hypertrophy and to prevent muscle mass decline with age and (ii) in vitro to enhance the proliferative life span of myoblasts and to induce myotube hypertrophy. In this study, performed on human primary cultures, we have shown that IGF-1 has very little effect on the proliferative life span of human myoblasts but does delay replicative senescence. IGF-1 also induces hypertrophy of human myotubes in vitro, as characterized by an increase in the mean number of nuclei per myotube, an increase in the fusion index, and an increase in myosin heavy chain (MyHC) content. In addition, muscle hypertrophy can be triggered in the absence of proliferation by recruiting more mononucleated cells. We propose that IGF-1-induced hypertrophy can involve the recruitment of reserve cells in human skeletal muscle.  相似文献   
104.
This study addresses an application of pyridine nucleotide enzymatic analyses to evaluate the activity of the mitochondrial electron transport chain (reduced nicotinamide adenine dinucleotide (NADH) oxidase) and Complexes I and II in samples of human muscle as small as approximately 10 mg wet weight. Key aspects in this adaptation are the use of high-performance liquid chromatography with fluorescence detection of NADH and use of alamethicin, a channel-forming antibiotic that enables an unrestricted access of substrates into the mitochondrial matrix. The procedure includes disintegration of tissue by Polytron homogenizer, extraction of myosin from myofibrillar fragments by KCl/pyrophosphate to facilitate release of mitochondria, and preparation of fractions of subsarcolemmal and intermyofibrillar mitochondria. Oxidation of NADH or succinate is assayed in the presence of 40 microg/ml alamethicin and the reaction is terminated by H(2)SO(4), which also destroys the remaining NADH. Nicotinamide adenine dinucleotide (NAD) or fumarate concentrations are measured using alcohol dehydrogenase or fumarase plus malic dehydrogenase reactions, respectively. Generation of NADH, assessed in auxiliary reactions in the presence of hydrazine, is strictly proportional to NAD or fumarate content across a concentration range of 1-20 microM. NADH is quantitatively analyzed with a detection limit of 3-5 pmol by HPLC using a reverse-phase Hypersil ODS column connected to a fluorescence detector.  相似文献   
105.
Regulation of protein synthesis by branched-chain amino acids in vivo   总被引:4,自引:0,他引:4  
Recent advances in the understanding of mRNA translation have facilitated molecular studies on the regulation of protein synthesis by nutrients and the interplay between nutrients and hormonal signals. Numerous reports have established that, in skeletal muscle, the branched-chain amino acids (BCAAs) have the unique ability to initiate signal transduction pathways that modulate translation initiation. Of the BCAAs, leucine is the most potent. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Interestingly, leucine signaling in skeletal muscle differs from that in liver, suggesting that the responses may be tissue specific. The purpose of this paper was to briefly review the current knowledge of how BCAAs act as regulators of protein synthesis in physiologically important tissues, with particular focus on the mechanisms by which BCAAs regulate translation initiation.  相似文献   
106.
By immunohistochemistry, we demonstrated the localization of the Na(+)-D-glucose cotransporter SGLT1 in capillaries of rat heart and skeletal muscle, but not in capillaries of small intestine and submandibular gland. mRNA of SGLT1 was identified in skeletal muscle and primary cultured coronary endothelial cells. The functional relevance of SGLT1 for glucose transport across capillary walls in muscle was tested by measuring the extraction of D-glucose from the perfusate during non-recirculating perfusion of isolated rat hindlimbs. In this model, D-glucose extraction from the perfusate is increased by insulin which accelerates D-glucose uptake into myocytes by increasing the concentration of glucose transporter GLUT4 in the plasma membrane. The insulin-induced increase of D-glucose extraction from the perfusate was abolished after blocking SGLT1 with the specific inhibitor phlorizin. The data show that SGLT1 in capillaries of skeletal muscle is required for the action of insulin on D-glucose supply of myocytes.  相似文献   
107.
The distribution pattern of muscle spindles in the skeletal musculature has been reviewed in a large number of muscles (using the literature data especially from cat and man), and the relation of spindle content to muscle mass was quantitatively examined in 36 cat and 140 human muscles. In both species, the number of spindles increases with increasing muscle mass in a power law fashion of the form y=bx+a, whereby y denotes the logarithm of spindle content within a muscle, and x is the logarithm of muscle mass. For the cat, slope b and intercept a were estimated as 0.39 and 1.53, and for man as 0.48 and 1.33, respectively. The results show that the spindle content of a muscle may be related to its mass, confirming a similar analysis made previously by Banks and Stacey (Mechano receptors, Plenum Press, New York, 1988, pp. 263-269) in a different data set. With regard to the histological profile of muscle fibers, (as it is already well documented by many groups) muscle spindles tend to be located in deeper muscle regions where oxidative fibers predominate, and are far scarcer in superficial and flat muscle regions where glycolytic fibers predominate. These discrete muscle regions differ also in the properties of the vessel tree supplying them, for which the term oxidative and glycolytic "angiotype" has been used. The results from these three aspects of analysis (relation to muscle mass, relation to muscle regions with high oxidative index and relation to muscle regions with dense vascular supply) were combined with histological findings showing that spindles may be in systematic anatomical contact to intramuscular vessels. Based on these data a hypothesis is proposed according to which, both the number and intramuscular placement of muscle spindles are related to the oxidative angiotype supplying the muscle territories rich in oxidative fibers. The hypothesis is discussed.  相似文献   
108.
Agrin isoforms with different bioactivities are synthesized by the nerve and the muscle. Neural agrin containing an 8-amino acid insert (z8) introduced by alternative splicing is the active form that induces synaptic differentiation at the neuromuscular junction. In addition to alternative splicing, extracellular calcium is also required for the activity of neural agrin. To understand better how the activity of agrin is regulated by alternative splicing, we have applied alanine substitution mutagenesis to the z8 insert and the calcium binding site in the minimally functional AgG3z8 fragment. Single alanine substitutions in the 4th through the 7th amino acid of the z8 splice insert significantly reduced the function of agrin, in terms of acetylcholine receptor clustering activity and the affinity for binding to the muscle surface. Mutation of the asparagine at the 4th position drastically reduces bioactivity such that it is equivalent to that of muscle form AgG3z0. These reduced activity mutants also show reduced magnitudes of the calcium-induced CD spectrum change from that observed in AgG3z8 fragments, indicating that cross-talk between calcium and the z8 insert is critical for the normal activity of agrin. However, removal of Ca2+ binding via mutation of both aspartic acids in the calcium binding site did not totally eliminate the activity of AgG3z8. These results suggest a model wherein the z8 insert is a Ca2+-responsive allosteric element that is essential in forming an active conformation in neuronal agrin.  相似文献   
109.
The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo 31P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This relaxation process carries information on the association state of ATP in the cell. To disentangle contributions of chemical exchange and cross-relaxation to magnetization transfer effects seen in 31P magnetic resonance spectroscopy of skeletal muscle, we performed saturation transfer experiments on wild type and double-mutant mice lacking the cytosolic muscle creatine kinase and adenylate kinase isoforms. We find that cross-relaxation, observed as nuclear Overhauser effects (NOEs), is responsible for magnetization transfer between ATP phosphates both in wild type and in mutant mice. Analysis of 31P relaxation properties identifies these effects as transferred NOEs, i.e. underlying this process is an exchange between free cellular ATP and ATP bound to slowly rotating macromolecules. This explains the β-ATP signal decrease upon saturation of the γ-ATP resonance. Although this usually is attributed to β-ADP ↔ β-ATP phosphoryl exchange, we did not detect an effect of this exchange on the β-ATP signal as expected for free [ADP], derived from the creatine kinase equilibrium reaction. This indicates that in resting muscle, conditions prevail that prevent saturation of β-ADP spins and puts into question the derivation of free [ADP] from the creatine kinase equilibrium. We present a model, matching the experimental result, for ADP ↔ ATP exchange, in which ADP is only transiently present in the cytosol.  相似文献   
110.
Satellite cells/myoblasts account for the majority of muscle regenerative potential in response to injury and muscular adaptation to exercise. Although the ability to influence this process would provide valuable benefits for treating a variety of patients suffering from muscle loss, the regulatory mechanisms of myogenesis are not completely understood. We have tested the hypothesis that transforming growth factor-β-activated kinase 1 (TAK1) is an important regulator of skeletal muscle formation. TAK1 is expressed in proliferating C2C12 myoblasts, and its levels are reduced upon differentiation of myoblasts into myotubes. In vivo, TAK1 is predominantly expressed in developing skeletal muscle of young mice. However, the expression of TAK1 was significantly up-regulated in regenerating skeletal muscle of adult mice. Overexpression of a dominant negative mutant of TAK1 or knockdown of TAK1 inhibited the proliferation and differentiation of C2C12 myoblasts. TAK1 was required for the expression of myogenic regulatory factors in differentiating myoblasts. Genetic ablation of TAK1 also inhibited the MyoD-driven transformation of mouse embryonic fibroblasts into myotubes. Inhibition of TAK1 suppressed the differentiation-associated activation of p38 mitogen-activated protein kinase (MAPK) and Akt kinase. Overexpression of a constitutively active mutant of MAPK kinase 6 (MKK6, an upstream activator of p38 MAPK) but not constitutive active Akt restored the myogenic differentiation in TAK1-deficient mouse embryonic fibroblasts. Insulin growth factor 1-induced myogenic differentiation was also found to involve TAK1. Collectively, our results suggest that TAK1 is an important upstream regulator of skeletal muscle cell differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号