首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   77篇
  国内免费   21篇
  2023年   11篇
  2022年   17篇
  2021年   39篇
  2020年   25篇
  2019年   30篇
  2018年   31篇
  2017年   33篇
  2016年   31篇
  2015年   38篇
  2014年   42篇
  2013年   69篇
  2012年   37篇
  2011年   21篇
  2010年   22篇
  2009年   37篇
  2008年   40篇
  2007年   46篇
  2006年   29篇
  2005年   37篇
  2004年   31篇
  2003年   27篇
  2002年   23篇
  2001年   28篇
  2000年   26篇
  1999年   22篇
  1998年   17篇
  1997年   14篇
  1996年   14篇
  1995年   10篇
  1994年   15篇
  1993年   14篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   8篇
  1987年   14篇
  1986年   10篇
  1985年   4篇
  1984年   8篇
  1983年   1篇
  1982年   4篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有983条查询结果,搜索用时 156 毫秒
71.
Root-placement patterns were examined in the clonal species Glechoma hederacea and Fragaria vesca when grown with different types of neighbours. Three different patterns were predicted as consequences of different types of interactions between roots: the avoidance pattern if root growth decreases in the presence of neighbouring roots; the intrusive pattern if root growth increases towards neighbouring roots; and the unresponsive pattern if root growth is unaffected by neighbouring roots. Experiments were conducted in which physical connection between ramets, and the genetic identity of neighbouring ramets, were manipulated. The patterns of distribution of entire root systems and elongation rates of individual roots were measured. Root systems and individual roots of G. hederacea avoided contact with roots of neighbouring ramets, irrespective of connection to the neighbour and its genetic or specific identity. In contrast, F. vesca roots grew equally towards and away from intraspecific ramet neighbours and their elongation was stimulated by contact with roots of G. hederacea ramets. These results demonstrate that root-placement patterns of plants grown with different types of neighbours vary between species, and suggest that factors additional to resource depletion could be involved in their development.  相似文献   
72.
Background information. In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi‐orientation). At the metaphase—anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule‐dependent forces. Results. We have studied the role of the minus‐end‐directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle‐assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2‐dependent spindle‐assembly checkpoint. Conclusions. These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi‐orientation during early mitosis.  相似文献   
73.
74.
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.  相似文献   
75.
76.
Apoptosis is a highly conserved procedure of cell death and occurs under various stimuli, including oxidative stress. A small heat shock protein, alphaB-crystallin, is found to process resistance to apoptosis in some cells and tissues. But the mechanisms under this protective role are not fully understood. In the present study, we reported the early protective role of alphaB-crystallin against hydrogen peroxide-induced apoptosis in mice myogenic C(2)C(12) cells. alphaB-Crystallin interacted with p53, a proapoptotic protein, during cell apoptosis and such protein interaction mainly occurred in the cytoplasm of the cells, suggesting that the interaction of alphaB-crystallin with p53 might prevent the translocation of p53 from cytoplasm to mitochondria. Hence, this study provides a hint that alphaB-crystallin affects on p53 mitochondrial translocation during oxidative stress-induced apoptosis.  相似文献   
77.
Centromeres are universally conserved functional units in eukaryotic linear chromosomes, but little is known about the structure and dynamics of the centromere in lower photosynthetic eukaryotes. Here we report the identification of a centromere marker protein CENH3 and visualization of centromere dynamics in the ultra-small primitive red alga Cyanidioschyzon merolae. Immunoblotting and immunofluorescence microscopy showed that CENH3 increased rapidly during S phase, followed by a drastic reconstitution into two discrete foci adjacent to the spindle poles at metaphase, suggesting the cell-cycle-regulated expression of CENH3. Immunoelectron microscopy revealed that the CENH3 signals were associated with the nuclear envelope, implying interplay between the kinetochore complex and the nuclear envelope. These results demonstrate dynamic centromere reconstitution during the cell cycle in an organism in which the chromosomes do not condense at metaphase.  相似文献   
78.
NDP reductase activity can be inhibited either by treatment with hydroxyurea or by incubation of an nrdA ts mutant strain at the non-permissive temperature. Both methods inhibit replication, but experiments on these two types of inhibition yielded very different results. The chemical treatment immediately inhibited DNA synthesis but did not affect the cell and nucleoid appearance, while the incubation of an nrdA101 mutant strain at the non-permissive temperature inhibited DNA synthesis after more than 50 min, and resulted in aberrant chromosome segregation, long filaments, and a high frequency of anucleate cells. These phenotypes are not induced by SOS. In view of these results, we suggest there is an indirect relationship between NDP reductase and the chromosome segregation machinery through the maintenance of the proposed replication hyperstructure.  相似文献   
79.
80.
How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss – in light of these recent insights – the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra‐chromosomal linkages by condensin complexes in the context of cohesin‐mediated inter‐chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod‐shaped metaphase chromosomes ready for their segregation to the cell poles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号