首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1667篇
  免费   63篇
  国内免费   96篇
  2024年   2篇
  2023年   11篇
  2022年   9篇
  2021年   18篇
  2020年   47篇
  2019年   40篇
  2018年   38篇
  2017年   42篇
  2016年   55篇
  2015年   42篇
  2014年   54篇
  2013年   145篇
  2012年   57篇
  2011年   75篇
  2010年   41篇
  2009年   88篇
  2008年   66篇
  2007年   69篇
  2006年   75篇
  2005年   79篇
  2004年   54篇
  2003年   69篇
  2002年   63篇
  2001年   49篇
  2000年   47篇
  1999年   34篇
  1998年   40篇
  1997年   37篇
  1996年   29篇
  1995年   38篇
  1994年   42篇
  1993年   41篇
  1992年   34篇
  1991年   32篇
  1990年   17篇
  1989年   17篇
  1988年   13篇
  1987年   10篇
  1986年   5篇
  1985年   27篇
  1984年   23篇
  1983年   10篇
  1982年   28篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1826条查询结果,搜索用时 62 毫秒
21.
A new simple method for the preparation of chemically crosslinked chitosan beads is presented. It consists of the dropwise addition of 2-3% (w/v) low molecular weight chitosan solution containing 2% (w/v) glyoxal in 1% (w/v) tetrasodiumdiphosphate, pH 8.0. Immobilized viable baker's yeast (Saccharomyces cerevisiae) could be obtained via gel entrapment within the new beads when means preventing their direct contact with soluble chitosan were provided, "disguising" the cells until gelation and crosslinking were completed. Such means included cell suspension in castor oil or mixing with carboxymethyl-cellulose powder. Application of these means was shown to be necessary, as cells exposed to soluble chitosan immediately lost their viability and glycolytic activity. Yeast disguised in castor oil was also protected from bead reinforcement by glutaraldehyde treatment, significantly strengthening bead stability while operating under acidic conditions. This capability was demonstrated by continuous ethanol production by chitosan entrapped yeast. (c) 1994 John Wiley & Sons, Inc.  相似文献   
22.
Cross-flow microfiltration was shown to retain Saccharomyces cerevisiae biomass utilized for heavy metal bioaccumulation. The passage of metal-laden influent through a series of sequential bioaccumulation systems allowed for further reductions in the levels of copper, cadmium, and cobalt in the final effluent than that afforded by a single bioaccumulation process. Serial bioaccumulation systems also allowed for partial separation of metals from dual metal influents. More than one elemental metal cation could be accumulated simultaneously and in greater quantities than when a single metal was present in the effluent (Cu(2+) 0.43 mmol, Cu(2+) + Cd(2+) 0.67 mmol, and Cu(2+) + Co(2+) 0.83 mmol/g yeast dry mass when the initial concentration of each of the metal species was 0.2 mmol.L(-1)). Co-accumulation of two different metal cations allowed higher total levels of bioaccumulation than found with a single metal. The flux rate was 2.9 x 10(2) L.h(-2)mum(-2) using a polypropylene microfiltration membrane (0.1 mum pore size) at 25 degrees C. (c) 1994 John Wiley & Sons, Inc.  相似文献   
23.
The amino acid sequences of 47 P-type ATPases from several eukaryotic and bacterial kingdoms were divided into three structural segments based on individual hydropathy profiles. Each homologous segment was (1) multiply aligned and functionally evaluated, (2) statistically analyzed to determine the degrees of sequence similarity, and (3) used for the construction of parsimonious phylogenetic trees. The results show that all of the P-type ATPases analyzed comprise a single family with four major clusters correlating with their cation specificities and biological sources as follows: cluster 1: Ca2+-transporting ATPases; cluster 2: Na+- and gastric H+-ATPases; cluster 3: plasma membrane H+-translocating ATPases of plants, fungi, and lower eukaryotes; and cluster 4: all but one of the bacterial P-type ATPases (specific for K+, Cd2+, Cu2+ and an unknown cation). The one bacterial exception to this general pattern was the Mg2+-ATPase of Salmonella typhimurium, which clustered with the eukaryotic sequences. Although exceptions were noted, the similarities of the phylogenetic trees derived from the three segments analyzed led to the probability that the N-terminal segments 1 and the centrally localized segments 2 evolved from a single primordial ATPase which existed prior to the divergence of eukaryotes from prokaryotes. By contrast, the C-terminal segments 3 appear to be eukaryotic specific, are not found in similar form in any of the prokaryotic enzymes, and are not all demonstrably homologous among the eukaryotic enzymes. These C-terminal domains may therefore have either arisen after the divergence of eukaryotes from prokaryotes or exhibited more rapid sequence divergence than either segment 1 or 2, thus masking their common origin. The relative rates of evolutionary divergence for the three segments were determined to be segment 2 < segment 1 < segment 3. Correlative functional analyses of the most conserved regions of these ATPases, based on published site-specific mutagenesis data, provided preliminary evidence for their functional roles in the transport mechanism. Our studies define the structural and evolutionary relationships among the P-type ATPases. They should provide a guide for the design of future studies of structure-function relationships employing molecular genetic, biochemical, and biophysical techniques. Correspondence to: M.H. Saier, Jr.  相似文献   
24.
Preston  C. M.  Mead  D. J. 《Plant and Soil》1994,160(2):281-285
Although a high proportion of fertilizer N may be immobilized in organic forms in the soil, no studies have examined the long-term availability of residual fertilizer 15N in forestry situations. We investigated this by growing lodgepole pine (Pinus contorta) seedlings in surface (0–10 cm) soil sample eight years after application of 15N-urea, 15NH4NO3 and NH4 15NO3 to lodgepole pine in interior British Columbia. After nine months of growth in the greenhouse, seedlings took up an average of 8.5% of the 15N and 4.6% of the native N per pot. Most of the mineral N in the pots without seedlings was in the form of nitrate, while pots with seedlings had very low levels of mineral N. In contrast to the greenhouse study, there was no significantuptake of 15N by trees in the field study after the first growing season, although half of the soil organic 15N was lost between one and eight years after fertilization. This indicates the need to understand the mechanisms which limit the uptake of mineral N by trees in the field, and the possible mismatch of tree demand and mineral N availability.  相似文献   
25.
The growth yields for glucose and glutamine of murine hybridoma cells entrapped in collagen gel particles were examined during the growth phase. The immobilized hybridoma cells were cultivated in a fluidized bed fermenter where the medium was circulating to supply oxygen separately. Procedures to supply an alkaline solution for adjusting the pH level strongly affected the growth yields. A direct supply of the alkaline solution to the cultivation system reduced both the growth yields for glucose and glutamine, probably due to a local increase in pH level. On the other hand, when fresh medium in which the pH was adjusted to around 8.5 was added to the cultivation system, the growth yields were unchanged even at the same pH level as when direct alkaline supply was used. These results suggest that an indirect alkaline supply could be recommended to ajust the pH level when using medium-circulating-fermenters.  相似文献   
26.
The low-copy-number and broad-host-range pSM19035-derived plasmid pBT233 is stably inherited in Bacillus subtilis cells. Two distinct regions, segA and segB, enhance the segregational stability of the plasmid. Both regions function in a replicon-independent manner. The maximization of random plasmid segregation is accomplished by the recombination proficiency of the host or the presence of the pBT233 segA region. The segA region contains two open reading frames (or) [ and ]. Inactivation or deletion of or results in SegA plasmids. Better than random segregation requires an active segB region. The segB region contains two ors (or and or). Inactivation of either of the orfs does not lead to an increase in cell death, but or plasmids are randomly segregated. These results suggest that pBT233 stabilization relies on a complex system involving resolution of plasmid oligomers (segA) and on the function(s) encoded by the segB region.  相似文献   
27.
    
Bacteriophage 16-3 inserts its genome into the chromosome of Rhizobium meliloti strain 41 (Rm41) by site-specific recombination. The DNA regions around the bacterial attachment site (attB) and one of the hybrid attachment sites bordering the integrated prophage (attL) were cloned and their nucleotide sequences determined. We demonstrated that the 51 by region, where the phage and bacterial DNA sequences are identical, is active as a target site for phage integration. Furthermore it overlaps the 3 end of a putative proline tRNA gene. This gene shows 79% similartiy to the corresponding proline tRNA-like genomic target sequence of certain integrative plasmids in Actinomycetes.  相似文献   
28.
A chloramphenicol-resistance gene (cml) was introduced into the Lactobacillus plantarum gene encoding conjugated bile acid hydrolasc (cbh) on a ColEl replicon. This plasmid which is nonreplicative in Lactobacillus was used to transform L. plantarum strain 80. A homologous double cross-over recombination event resulted in replacement of the chromosomal cbh gene by the cml-containing cbh gene. The transformants obtained were unable to synthesize active conjugated bile acid hydrolase (Cbh). The Cbh-CmlR phenotype was stably maintained for more than 100 generations under nonselective conditions.This paper is dedicated with great appreciation to Dr. Frits Berends on the occasion of his retirement as Head of the Biochemistry Department of the TNO Medical Biological Laboratory  相似文献   
29.
Assimilation of N by heterotrophic soil microbial biomass is associated with decomposition of organic matter in the soil. The form of N assimilated can be either low molecular weight organic N released from the breakdown of organic matter (direct assimilation), or NH+4 and NO3 from the soil inorganic N pool, into which mineralized organic N is released (mineralization immobilization turnover). The kinetics of C and N turnover in soil is quantifiable by means of computer simulation models. NCSOIL was constructed to represent the two assimilation schemes. The rate of N assimilation depends on the rate of C assimilation and microbial C/N ratio, thereby rendering it independent of the assimilation scheme. However, if any of the N forms is labeled, a different amount of labeled N assimilation will be simulated by the different schemes. Experimental data on inorganic N and 15N and on organic 15N dynamics in soils incubated with 15N added as NH+4 or organic N were compared with data simulated by different model schemes. Direct assimilation could not account for the amount of 15N assimilated in any of the experimental treatments. The best fit of the model to experimental data was obtained for the mineralization immobilization turnover scheme when both NH+4 and NO3 were assimilated, in proportion to their concentration in the soil.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号