首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1667篇
  免费   64篇
  国内免费   96篇
  1827篇
  2024年   2篇
  2023年   11篇
  2022年   10篇
  2021年   18篇
  2020年   47篇
  2019年   40篇
  2018年   38篇
  2017年   42篇
  2016年   55篇
  2015年   42篇
  2014年   54篇
  2013年   145篇
  2012年   57篇
  2011年   75篇
  2010年   41篇
  2009年   88篇
  2008年   66篇
  2007年   69篇
  2006年   75篇
  2005年   79篇
  2004年   54篇
  2003年   69篇
  2002年   63篇
  2001年   49篇
  2000年   47篇
  1999年   34篇
  1998年   40篇
  1997年   37篇
  1996年   29篇
  1995年   38篇
  1994年   42篇
  1993年   41篇
  1992年   34篇
  1991年   32篇
  1990年   17篇
  1989年   17篇
  1988年   13篇
  1987年   10篇
  1986年   5篇
  1985年   27篇
  1984年   23篇
  1983年   10篇
  1982年   28篇
  1981年   2篇
  1979年   4篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1827条查询结果,搜索用时 15 毫秒
11.
The permeabilization of Saccharomyces cerevisiae (baker's yeast), either before or after immobilization in polyacrylamide gel (PAG), has been examined as a means to increase the catalase activity of PAG-immobilized yeast cells. Prior permeabilization of the cells resulted in large losses of catalase activity during immobilization, but permeabilization after immobilization produced increases in the catalase activity of yeast/PAG particles. A dependence of the accessible catalase activity on the concentration of polyacrylamide in permeabilized yeast/PAG particles, and on the method of permeabilization of the immobilized cells, was observed. Optimal levels of stable catalase activity (1000-2000 IU/g PAG particles; ca. 5%-10% of total available activity) were obtained by immobilizing yeast cells (0.5 g wet cells/mL gel) in 10% (w/v) PAG, followed by permeabilization of the entrapped cells with either cetyltrimethylammonium bromide, Triton X-100 and one freeze-thaw, or five freeze-thaw cycles. (c) 1992 John Wiley & Sons, Inc.  相似文献   
12.
13.
Cre-lox mediated site-specific integration in tobacco or Arabidopsis used polyethylene glycol or Agrobacterium, respectively, to deliver the integrating DNA. The polyethylene glycol method is inconvenient since it requires the use of protoplasts. The Agrobacterium method is inefficient as the single-stranded T-DNA is not a substrate for Cre-lox recombination. In this study, we tested the biolistic method for the site-specific insertion of DNA into the rice genome. Two target callus lines, each harboring a single genomic lox target, were generated by Agrobacterium-mediated transformation. The target callus lines were subjected to a second round of transformation by particle bombardment with a construct designed to excise the plasmid backbone from the integrating DNA, followed by the recombination of the integrating DNA into the genomic lox target. Site-specific integration was obtained from both target callus lines. Three integrant plants were regenerated from one target line and were found to have a precise copy of the integrating DNA at the target site, although only one plant has the integrating DNA as the sole copy in the genome. Site-specific integration through the biolistic delivery of DNA can be considered for other plants that are transformable via particle bombardment.  相似文献   
14.
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200‐μm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His6‐tagged enzymes via Ni‐NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop‐flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK‐catalysed synthesis of L ‐erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis–Menten model. Results show that the TK kinetic parameters in the IEMR (Vmax(app) = 0.1 ± 0.02 mmol min–1, Km(app) = 26 ± 4 mM) are comparable with those measured in free solution. Furthermore, the kcat for the microreactor of 4.1 × 105 s?1 was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His6‐immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell‐based systems for TK bioprocess characterization. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
15.
The antibacterial and anti-biofilm activities of propolis have been intensively reported. However, the application of this folk remedy as a means to prevent biomedical implant contamination has yet to be completely evaluated. In response to the significant resistant and infectious attributes of biofilms, biomaterials engineered to possess specific chemical and physical properties were immobilized with metal free Russian propolis ethanol extracts (MFRPEE), a known antibacterial agent. The results obtained from this study begin to examine the application of MFRPEE as a novel alternative method for the prevention of medical and biomedical implant infections. When constructed under specific experimental conditions, immobilized biomaterials showed excellent stability when subjected to simulated body fluid and fetal bovine serum. The ability of immobilized biomaterials to specifically target pathogens (both Gram-positive and Gram-negative biofilm forming bacteria), while promoting tissue cell growth, renders these biomaterials as potential candidates for clinical applications.  相似文献   
16.
Hen egg white lysozyme was immobilized by carbodiimide method to form amide bonds with a polymer (AS-L) showing reversibly soluble-insoluble characteristics with pH change. The immobilized enzyme (LY-AS) was soluble above pH 6 and precipitate below pH 4.5, offering advantages in that it can carry out hydrolysis of microbial cells in a soluble form yet be recovered after precipitation at low pH. The maximum specific activity of LY-AS was 66% of that of free lysozyme with M. lysodeikticus cells as substrate, which is much higher than the values reported in the literature using water-insoluble materials as carriers. The effects of pH and temperature on the activity of LY-AS were studied and compared with those of free lysozyme. With repeated pH cycles between 6.6 and 4.5, the operation half-life of immobilized enzyme activity was nine cycles. Repeated batch lysis of microbial cells could be carried out with intermittent enzyme precipitation and recovery steps. In such an operation the insoluble residual cells should be recovered together with the immobilized enzyme to minimize enzyme loss arising from adsorption to cells.  相似文献   
17.
Gelatine gels originate from water in oil microemulsions in which the ternary system consists of isooctane/ sulfosuccinic acid bis [2-ethyl hexyl] ester/water; the solubilization of gelatin in the water pool of these microemulsions transforms them into viscous gels in which it is possible to cosolubilize various reactive molecules. These gels were used to immobilize two phenoloxidases, a laccase from Trametes versicolor and a tyrosinase from mushroom. The best balance between gel retention and catalytic activity was reached at a gelatine concentration of 2.5% (w/v) in the case of tyrosinase, while laccase immobilization was independent of gelatine concentration. Both enzymes kept the same optimum pH as the corresponding soluble controls, while a partial loss of activity was observed when they were immobilized. Immobilized enzymes showed an increased stability when incubated for several days at 4 degrees C with a very low release from the gels in the incubation solutions. The immobilization of tyrosinase and of laccase enhanced stability to thermal inactivation. Furthermore, gel-entrapped tyrosinase was almost completely preserved from proteolysis: more than 80% of the activity was maintained, while only 25% of the soluble control activity was detected after the same proteolytic treatments. A column packed with gel-immobilized tyrosinase was used to demonstrate that enzymes immobilized with this technique may be reused several times in the same reaction without loosing their efficiency. Finally, gel-entrapped tyrosinase and laccase were capable of removing naturally occurring and xeno-biotic aromatic compounds from aqueous suspensions with different degrees of efficiency. (c) 1995 John Wiley & Sons, Inc.  相似文献   
18.
AIMS: To examine the potential of Zymomonas mobilis entrapped into polyvinylalcohol (PVA) lens-shaped immobilizates in batch and continuous ethanol production. METHODS AND RESULTS: Cells, free or immobilized in PVA hydrogel-based lens-shaped immobilizates - LentiKats, were cultivated on glucose medium in a 1 l bioreactor. In comparison with free cell cultivation, volumetric productivity of immobilized batch culture was nine times higher (43.6 g l(-1) h(-1)). The continuously operated system did not improve the efficiency (volumetric productivity of the immobilized cells 30.7 g l(-1) h(-1)). CONCLUSIONS: We demonstrated Z. mobilis capability, entrapped into LentiKats, in the cost-efficient batch system of ethanol production. SIGNIFICANCE AND IMPACT OF THE STUDY: The results reported here emphasize the potential of bacteria in combination with suitable fermentation technology in industrial scale. The innovation compared with traditional systems is characterized by excellent long-term stability, high volumetric productivity and other technological advantages.  相似文献   
19.
包埋法固定化对硫氧化微生物菌群结构和功能的影响   总被引:1,自引:0,他引:1  
【目的】为探讨包埋法固定化过程对硫氧化菌群硫化物去除能力及菌群微生物群落结构的影响,【方法】以聚乙烯醇-海藻酸钠-活性炭为载体,对硫氧化菌群进行了固定化,并采用富含硫化物的无机盐培养基,对比固定化与非固定化硫氧化菌群对硫化物的氧化去除能力。同时,利用PCR-DGGE技术,探讨硫氧化菌群在固定化前后以及在硫化物氧化去除过程中微生物群落结构变化。【结果】在对硫氧化菌群进行固定化之后,12 h之内对硫化物的最大去除能力从1000 mg/L下降为600 mg/L。硫氧化菌群的微生物群落结构发生了明显变化,但菌群中的硫氧化菌Catenococcus thiocycli未受影响,硫氧化菌Thioclava pacifica在菌群中的地位反而得到了强化。【结论】受制于底物在载体材料中的扩散迁移效率,硫氧化菌群对硫化物的氧化去除能力在固定化之后有所下降。由于不同微生物对固定化形成的微环境的适应能力以及对载体附着能力的不同,固定化对硫氧化菌群的微生物群落结构产生较大影响。  相似文献   
20.
Conidia ofPenicillium variabile P16 were immobilized in polyurethane sponge and used in repeated-batch processes in a fluidized-bed reactor. Optimal conditions for production of glucose oxidase and catalase were: inoculum size, 10%; glucose concentration, 80 g L–1; Ca-carbonate concentration, 15 g L–1; temperature, 28°C and aeration rate, 4 VV–1 min–1. In an extended repeated-batch process, glucose oxidase activity was highest after the fourth batch and catalase activity was highest after the fifth batch. Scanning electron microscopy showed that the fungus grew only in the interior of carrier particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号