首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2324篇
  免费   61篇
  国内免费   72篇
  2023年   8篇
  2022年   7篇
  2021年   19篇
  2020年   18篇
  2019年   16篇
  2018年   21篇
  2017年   13篇
  2016年   24篇
  2015年   43篇
  2014年   71篇
  2013年   95篇
  2012年   55篇
  2011年   112篇
  2010年   94篇
  2009年   61篇
  2008年   97篇
  2007年   109篇
  2006年   94篇
  2005年   114篇
  2004年   94篇
  2003年   94篇
  2002年   86篇
  2001年   45篇
  2000年   59篇
  1999年   58篇
  1998年   59篇
  1997年   64篇
  1996年   63篇
  1995年   56篇
  1994年   76篇
  1993年   53篇
  1992年   61篇
  1991年   53篇
  1990年   58篇
  1989年   43篇
  1988年   42篇
  1987年   45篇
  1986年   50篇
  1985年   41篇
  1984年   42篇
  1983年   16篇
  1982年   24篇
  1981年   14篇
  1980年   20篇
  1979年   21篇
  1978年   13篇
  1977年   12篇
  1976年   14篇
  1973年   4篇
  1972年   2篇
排序方式: 共有2457条查询结果,搜索用时 66 毫秒
91.
Abstract In DOC-PAGE, lipopolysaccharide (LPS) of Proteus mirabilis R14/1959 (Rb-type) mutant showed a ladder-like migration pattern indicating the presence of a high molecular weight polysaccharide chain. The isolated polysaccharide, called T-antigen because of similarity with the T1 chain of Salmonella friedenau LPS, contained d -glucose, d -galacturonic acid ( d -GalA), and d -GlcNAc in molar ratios 2:1:1 and was structurally different from the O-antigen of the parental S-strain P. mirabilis S1959 but identical to the O-antigen of another S-strain Proteus penneri 42. The importance of a d -GalA( l -Lys)-containing epitope, most likely present in the core region of LPS, and of GalA present in the T-antigen chain in manifesting the serological specificity of P. mirabilis R14/1959 were revealed using rabbit polyclonal homologous and heterologous R- and O-specific antisera and the appropriate antigens, including synthetic antigens which represent partial structures of various Proteus LPS.  相似文献   
92.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   
93.
Carotenogenic mutants ofPhycomyces, which accumulate excess β-carotene or its intermediates, always failed in zygospore development. No improvement occurred when such mutants were mated together with a helper wild type of the same mating type against the wild type of the opposite mating type. Addition of excess synthesized pheromone, trisporin B, also failed to improve the zygospore development, though the mating response was significantly activated in the early stages and abundant zygophores were formed. Exceptional acceleration of the zygospore development under these experimental conditions occurred in a regulatory albino mutant (carA), which does not accumulate excess intermediate carotenoids. Chemically- or genetically-induced ovarproduction of β-carotene or lycopene also inhibited the zygospore development. These results imply that the zygospore development ofPhycomyces is maximal when the intracellular amount of β-carotene is optimal (=wild type), and that pheromones act mainly in the early stages of mating, while other factors such as the cell-to-cell recognition system may also be involved in the later stages. Intracellular accumulation of excess β-carotene or its intermediates probably disturb such later-stage factors.  相似文献   
94.
The regeneration of shoot buds from callus cells in vitro is an important technique in modern plant genetic manipulation. Whilst it is clear that genetic factors play a major role in determining the ability of callus cells to become organized into regenerating shoot buds, the precise nature of these factors remains unknown. Here we show that callus derived from mutants of Arabidopsis thaliana which have reduced levels of endogenous bioactive gibberellins (GAs), or reduced responsivity to GAs, regenerates shoot buds more readily than does callus derived from wild-type controls. In addition, exogenous GA reduces, and exogenous paclobutrazol (a GA-biosynthesis inhibitor) increases, the frequency of shoot bud regeneration from wild-type callus. These results show that GA levels play a role in regulating shoot bud regeneration from callus, and suggest that variation in endogenous GA levels or responsivity may account for a major component of the genetic variation in shoot bud regeneration frequency described in other species.  相似文献   
95.
《Glycoconjugate journal》1995,12(5):721-728
The expression of neutral glycosphingolipids (GSLs) and gangliosides was investigated in cryosections of normal mouse skeletal muscle and in muscle of mice with neuromuscular diseases using indirect immunofluorescence microscopy. Transversal and longitudinal sections were immunostained with specific polyclonal antibodies against lactosylceramide, lacto-N-neotetraosylceramide, globoside, GM3(Neu5Ac), GM3(Neu5Gc) and GM1(Neu5Ac) as well as monoclonal anti-Forssman GSL antibody. In normal CBA/J mouse muscle (control) the main immunohistochemically detected ganglioside was GM3(Neu5Ac) followed by moderately expressed GM3(Neu5Gc) and GM1. The neutral GSLs lactosylceramide and globoside were stained with almost identical, high fluorescence intensity. Low amounts of lacto-N-neotetraosylceramide and trace quantities of Forssman GSL were immunostained. All GSLs were detected in the sarcolemma, but also in considerable amounts at the intracellular level. Mice with neuromuscular diseases were the A2G-adr mouse mutant (a model for human recessive myotonia of Becker type), the BL6-wr mutant (a model for motor neuron disease) and the BL10-mdx mouse mutant (a model for human Duchenne muscular dystrophy). No changes in GSL expression were found in the A2G-adr mouse, while muscle of the BL6-wr mouse showed increased intensity of immunofluorescence in stainings with anti-lactosylceramide and anti-GM3(Neu5Ac) antibodies. Muscle of BL10-mdx mice showed the most prominent changes in GSL expression with reduced fluorescence intensity for all antibodies. Major differences were not observed in the intensities of GSLs, but there were significant differences in the patterns of distribution on plasma membrane and at the subcellular level. The exact nature and pathogenesis of these changes should be elucidated since such investigations could furnish advances in understanding the functional role of neutral GSLs and gangliosides in normal as well as in diseased muscle. Abbreviations: BSA, bovine serum albumin; DAPI, 4, 6-diamidine-2-phenylindole-dihydrochloride; DTAF, dichlorotriazinylamino-fluorescein; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycolylneuraminic acid [53]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [54] and the nomenclature of Svennerholm [55]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gal1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse3Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; Forssman GSL or GbOse5Cer, GalNAc1-3GalNAc1-3GAl1-4Gal1-4Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM1, II3Neu5Ac-GgOse4Cer.  相似文献   
96.
 Most biological substrates have distinctive sizes, shapes, and charge distributions which can be recognized specifically by proteins. In contrast, myoglobin must discriminate between the diatomic gases O2, CO, and NO which are apolar and virtually the same size. Selectivity occurs at the level of the covalent Fe-ligand complexes, which exhibit markedly different bond strengths and electrostatic properties. By pulling a water molecule into the distal pocket, His64(E7)1 inhibits the binding of all three ligands by a factor of ∼10 compared to that observed for protoheme-imidazole complexes in organic solvents. In the case of O2 binding, this unfavorable effect is overcome by the formation of a strong hydrogen bond between His64(E7) and the highly polar FeO2 complex. This favorable electrostatic interaction stabilizes the bound O2 by a factor of ∼1000, and the net result is a 100-fold increase in overall affinity compared to model hemes or mutants with an apolar residue at position 64. Electrostatic interaction between FeCO and His64 is very weak, resulting in only a two- to three-fold stabilization of the bound state. In this case, the inhibitory effect of distal pocket water dominates, and a net fivefold reduction in K CO is observed for the wild-type protein compared to mutants with an apolar residue at position 64. Bound NO is stabilized ∼tenfold by hydrogen bonding to His64. This favorable interaction with FeNO exactly compensates for the tenfold inhibition due to the presence of distal pocket water, and the net result is little change in K NO when the distal histidine is replaced with apolar residues. Thus, it is the polarity of His64 which allows discrimination between the diatomic gases. Direct steric hindrance by this residue plays a minor role as judged by: (1) the independence of K O2, K CO, and K NO on the size of apolar residues inserted at position 64, and (2) the observation of small decreases, not increases, in CO affinity when the mobility of the His64 side chain is increased. Val68(E11) does appear to hinder selectively the binding of CO. However, the extent is no more than a factor of 2–5, and much smaller than electrostatic stabilization of bound O2 by the distal histidine. Received, accepted: 23 May 1997  相似文献   
97.
Replacement of the cysteine at position 112 of Pseudomonas aeruginosa azurin with an aspartic acid residue results in a mutant (Cys112Asp) protein that retains a strong copper-binding site. CuII(Cys112Asp) azurin can be reduced by excess [RuII(NH3)6]2+, resulting in a CuI protein with an electronic absorption spectrum very similar to that of wild-type CuI azurin. Cys112Asp azurin exhibits reversible interprotein electron-transfer reactivity with P. aeruginosa cytochrome c 551 (μ?=?0.1?M sodium phosphate (pH?7.0);(CuII/I)?=?180 mV vs NHE); this redox activity indicates that electrons can still enter and exit the protein through the partially solvent-exposed imidazole ring of His117. The structure of CuII(Cys112Asp) azurin at 2.4-Å resolution shows that the active-site copper is five coordinate: the pseudo-square base of the distorted square-pyramidal structure is defined by the imidazole Nδ atoms of His46 and His117 and the oxygen atoms of an asymmetrically-bound bidentate carboxylate group of Asp112; the apical position is occupied by the oxygen atom of the backbone carbonyl group of Gly45. The CuII–Asp112 interaction is distinguished by an approximately 1.2-Å displacement of the metal center from the plane defined by the Asp112 carboxylate group.  相似文献   
98.
TheSaccharomyces cerevisiae killer toxin K1 is a secreted α/β-heterodimeric protein toxin that kills sensitive yeast cells in a receptor-mediated two-stage process. The first step involves toxin binding to β-1,6-d-glucan-components of the outer yeast cell surface; this step is blocked in yeast mutants bearing nuclear mutations in any of theKRE genes whose products are involved in synthesis and/or assembly of cell wall β-d-glucans. After binding to the yeast cell wall, the killer toxin is transferred to the cytoplasmic membrane, subsequently leading to cell death by forming lethal ion channels. In an attempt to identify a secondary K1 toxin receptor at the plasma membrane level, we mutagenized sensitive yeast strains and isolated killer-resistant (kre) mutants that were resistant as spheroplasts. Classical yeast genetics and successive back-crossings to sensitive wild-type strain indicated that this toxin resistance is due to mutation(s) in a single chromosomal yeast gene (KRE12), renderingkrel2 mutants incapable of binding significant amounts of toxin to the membrane. Sincekrel2 mutants showed normal toxin binding to the cell wall, but markedly reduced membrane binding, we isolated and purified cytoplasmic membranes from akrel2 mutant and from an isogenicKre12+ strain and analyzed the membrane protein patterns by 2D-electrophoresis using a combination of isoelectric focusing and SDS-PAGE. Using this technique, three different proteins (or subunits of a single multimeric protein) were identified that were present in much lower amounts in thekre12 mutant. A model for K1 killer toxin action is presented in which the gene product ofKRE12 functions in vivo as a K1 docking protein, facilitating toxin binding to the membrane and subsequent ion channel formation.  相似文献   
99.
A complex of human interferon-γ (IFN- γ) with the soluble extracellular domain of the IFN- γ receptor α-chain (IFN-γ-R) has been crystallised. Crystals of the complex were grown using PEG 4000 as the precipitating agent in the presence of β-octyl glucoside. The receptor-ligand complex crystallizes in a monoclinic space group and diffracts to about 3.0 Å resolution. Isomorphous crystals have been obtained with complex containing selenomethionine and cysteine mutants of IFN-γ, which may facilitate the ongoing X-ray structure determination. © 1995 Wiley-Liss, Inc.  相似文献   
100.
The sensitivity of halobacteria to antibiotics   总被引:1,自引:0,他引:1  
Abstract Eleven species of the genera Halobacterium, Halococcus and the recently proposed Haloarcula were tested by the macro-broth dilution method for their sensitivity to 20 antibiotics with different modes of action. The most active were bacitracin, erythromycin, haloquinone, rifampicin and novobiocin. Resistant mutants of H. mediterranei to bacitracin, chloramphenicol and josamycin were obtained with frequencies of spontaneous mutation between 10−4 and 10−7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号