首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2324篇
  免费   61篇
  国内免费   72篇
  2023年   8篇
  2022年   7篇
  2021年   19篇
  2020年   18篇
  2019年   16篇
  2018年   21篇
  2017年   13篇
  2016年   24篇
  2015年   43篇
  2014年   71篇
  2013年   95篇
  2012年   55篇
  2011年   112篇
  2010年   94篇
  2009年   61篇
  2008年   97篇
  2007年   109篇
  2006年   94篇
  2005年   114篇
  2004年   94篇
  2003年   94篇
  2002年   86篇
  2001年   45篇
  2000年   59篇
  1999年   58篇
  1998年   59篇
  1997年   64篇
  1996年   63篇
  1995年   56篇
  1994年   76篇
  1993年   53篇
  1992年   61篇
  1991年   53篇
  1990年   58篇
  1989年   43篇
  1988年   42篇
  1987年   45篇
  1986年   50篇
  1985年   41篇
  1984年   42篇
  1983年   16篇
  1982年   24篇
  1981年   14篇
  1980年   20篇
  1979年   21篇
  1978年   13篇
  1977年   12篇
  1976年   14篇
  1973年   4篇
  1972年   2篇
排序方式: 共有2457条查询结果,搜索用时 312 毫秒
171.
The kinetics of the activation and anaerobic inactivation processes of Desulfovibrio gigas hydrogenase have been measured in D2O by FTIR spectroelectrochemistry. A primary kinetic solvent isotope effect was observed for the inactivation process but not for the activation step. The kinetics of these processes have been also measured after replacement of a glutamic residue placed near the active site of an analogous [NiFe] hydrogenase from Desulfovibrio fructosovorans. Its replacement by a glutamine affected greatly the kinetics of the inactivation process but only slightly the activation process. The interpretation of the experimental results is that the rate-limiting step for anaerobic inactivation is the formation from water of a -OH bridge at the hydrogenase active site, and that Glu25 has a role in this step.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0559-7  相似文献   
172.
173.
Salicylic acid (SA) is reported to protect plants from heat shock (HS), but insufficient is known about its role in thermotolerance or how this relates to SA signaling in pathogen resistance. We tested thermotolerance and expression of pathogenesis-related (PR) and HS proteins (HSPs) in Arabidopsis thaliana genotypes with modified SA signaling: plants with the SA hydroxylase NahG transgene, the nonexpresser of PR proteins (npr1) mutant, and the constitutive expressers of PR proteins (cpr1 and cpr5) mutants. At all growth stages from seeds to 3-week-old plants, we found evidence for SA-dependent signaling in basal thermotolerance (i.e. tolerance of HS without prior heat acclimation). Endogenous SA correlated with basal thermotolerance, with the SA-deficient NahG and SA-accumulating cpr5 genotypes having lowest and highest thermotolerance, respectively. SA promoted thermotolerance during the HS itself and subsequent recovery. Recovery from HS apparently involved an NPR1-dependent pathway but thermotolerance during HS did not. SA reduced electrolyte leakage, indicating that it induced membrane thermoprotection. PR-1 and Hsp17.6 were induced by SA or HS, indicating common factors in pathogen and HS responses. SA-induced Hsp17.6 expression had a different dose-response to PR-1 expression. HS-induced Hsp17.6 protein appeared more slowly in NahG. However, SA only partially induced HSPs. Hsp17.6 induction by HS was more substantial than by SA, and we found no SA effect on Hsp101 expression. All genotypes, including NahG and npr1, were capable of expression of HSPs and acquisition of HS tolerance by prior heat acclimation. Although SA promotes basal thermotolerance, it is not essential for acquired thermotolerance.  相似文献   
174.
Maltose is exported from the Arabidopsis chloroplast as the main product of starch degradation at night. To investigate its fate in the cytosol, we characterised plants with mutations in a gene encoding a putative glucanotransferase (disproportionating enzyme; DPE2), a protein similar to the maltase Q (MalQ) gene product involved in maltose metabolism in bacteria. Use of a DPE2 antiserum revealed that the DPE2 protein is cytosolic. Four independent mutant lines lacked this protein and displayed a decreased capacity for both starch synthesis and starch degradation in leaves. They contained exceptionally high levels of maltose, and elevated levels of glucose, fructose and other malto-oligosaccharides. Sucrose levels were lower than those in wild-type plants, especially at the start of the dark period. A glucosyltransferase activity, capable of transferring one of the glucosyl units of maltose to glycogen or amylopectin and releasing the other, was identified in leaves of wild-type plants. Its activity was sufficient to account for the rate of starch degradation. This activity was absent from dpe2 mutant plants. Based on these results, we suggest that DPE2 is an essential component of the pathway from starch to sucrose and cellular metabolism in leaves at night. Its role is probably to metabolise maltose exported from the chloroplast. We propose a pathway for the conversion of starch to sucrose in an Arabidopsis leaf.  相似文献   
175.
13C NMR spectra of [1-13C]Val- or -Pro-labeled bacteriorhodopsin (bR) and its single or double mutants, including D85N, were recorded at various pH values to reveal conformation and dynamics changes in the transmembrane -helices, in relation to proton release and uptake between bR and the M-like state caused by modified charged states at Asp85 and the Schiff base (SB). It was found that the D85N mutant acquired local fluctuation motion with a frequency of 104 Hz in the transmembrane B -helix, concomitant with deprotonation of SB in the M-like state at pH 10, as manifested from a suppressed 13C NMR signal of the [1-13C]-labeled Val49 residue. Nevertheless, local dynamics at Pro50 neighboring with Val49 turned out to be unchanged, irrespective of the charged state of SB as viewed from the 13C NMR of [1-13C]-labeled Pro50. This means that the transmembrane B -helix is able to acquire the fluctuation motion with a frequency of 104 Hz beyond the kink at Pro50 in the cytoplasmic side. Concomitantly, fluctuation motion at the C helix with frequency in the order of 104 Hz was found to be prominent, due to deprotonation of SB at pH 10, as viewed from the 13C NMR signal of Pro91. Accordingly, we have proposed here a novel mechanism as to proton uptake and transport based on a dynamic aspect that a transient environmental change from a hydrophobic to hydrophilic nature at Asp96 and SB is responsible for the reduced pKa value which makes proton uptake efficient, as a result of acquisition of the fluctuation motion at the cytoplasmic side of the transmembrane B and C -helices in the M-like state. Further, it is demonstrated that the presence of a van der Waals contact of Val49 with Lys216 at the SB is essential to trigger this sort of dynamic change, as revealed from the 13C NMR data of the D85N/V49A mutant.  相似文献   
176.
The absolute sensitivity of sporangiophores of Phycomyces blakesleeanus to centrifugal acceleration was determined on a clinostat centrifuge. The centrifuge provides centrifugal accelerations ranging from 10(-4) to 6 x g. The rotor of the centrifuge, which accommodates 96 culture vials with single sporangiophores, is clinostatted, that is, turning "head over", at slow speed (1 rev min(-1)) while it is running. The negative gravitropism of sporangiophores is characterized by two components: a polar angle, which is measured in the plane of bending, and an aiming-error angle, which indicates the deviation of the plane of bending from the vector of the centrifugal acceleration. Dose-response curves were generated for both angles with centrifugations lasting 3, 5, and 8 h. The threshold for the polar angle depends on the presence of statoliths, so-called octahedral protein crystals in the vacuoles. The albino strain C171 carAcarR (with crystals) has a threshold near 10(-2) x g while the albino strain C2 carAgeo-3 (without crystals) has a threshold of about 2 x 10(-1) x g. The threshold for the aiming error angle is ill defined and is between 10(-2) and 10(-1) x g. The threshold for the polar angle of the wild type NRRL 1555 (with crystals) is near 8 x 10(-2) x g.  相似文献   
177.
The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored membrane protein that is thought to play an active role during cancer cell invasion and metastasis. We have expressed a truncated soluble form of human uPAR using its native signal peptide in stably transfected Drosophila Schneider 2 (S2) cells. This recombinant product, denoted suPAR (residues 1–283), is secreted in high quantities in serum-free medium and can be isolated in very high purity. Characterization by SDS–PAGE and mass spectrometry reveals that suPAR produced in this system carries a uniform glycosylation composed of biantennary carbohydrates. In contrast, suPAR produced in stably transfected Chinese hamster ovary (CHO) cells carries predominantly complex-type glycosylation and exhibits in addition a site-specific microheterogeneity of the individual N-linked carbohydrates. Measurement of binding kinetics for the interaction with uPA by surface plasmon resonance reveals that S2-produced suPAR exhibits binding properties similar to those of suPAR produced by CHO cells. By site-directed mutagenesis we have furthermore removed the five potential N-linked glycosylation-sites either individually or in various combinations and studied the effect thereof on secretion and ligand-binding. Only suPAR completely deprived of N-linked glycosylation exhibits an impaired level of secretion. All the other mutants showed comparable secretion levels and retained the ligand-binding properties of suPAR-wt. In conclusion, stable expression of suPAR in Drosophila S2 cells offers a convenient and attractive method for the large scale production of homogeneous preparations of several uPAR mutants, which may be required for future attempts to solve the three-dimensional structure of uPAR by X-ray crystallography.  相似文献   
178.
Antifreeze proteins (AFPs) enable organisms to survive under freezing or sub-freezing conditions. AFPs have a great potential in the low temperature storage of cells, tissues, organs, and foods. This process will require a large number of recombinant AFPs. In the present study, the recombinant carrot AFP was highly expressed in Escherichia coli strain BL21 (DE3). The activity of the purified and refolded recombinant proteins was analyzed by measurement of thermal hysteresis (TH) activity and detection of in vitro antifreeze activity by measuring enhanced cold resistance of bacteria. Two carrot AFP mutants generated by site-directed mutagenesis were also expressed and purified under these conditions for use in parallel experiments. Recombinant DcAFP displayed a TH activity equivalent to that of native DcAFP, while mutants DcAFP-N130Q and rDcAFP-N130V showed 32 and 43% decreases in TH activity, respectively. Both the recombinant DcAFP and its mutants were able to enhance the cold resistance of bacteria, to degrees consistent with their respective TH activities.  相似文献   
179.
Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.  相似文献   
180.
alpha-Hemolysin (alphaHL) is secreted by Staphylococcus aureus as a water-soluble monomer that assembles into a heptamer to form a transmembrane pore on a target membrane. The crystal structures of the LukF water-soluble monomer and the membrane-bound alpha-hemolysin heptamer show that large conformational changes occur during assembly. However, the mechanism of assembly and pore formation is still unclear, primarily because of the difficulty in obtaining structural information on assembly intermediates. Our goal is to use disulfide bonds to selectively arrest and release alphaHL from intermediate stages of the assembly process and to use these mutants to test mechanistic hypotheses. To accomplish this, we created four double cysteine mutants, D108C/K154C (alphaHL-A), M113C/K147C (alphaHL-B), H48C/ N121C (alphaHL-C), I5C/G130C (alphaHL-D), in which disulfide bonds may form between the pre-stem domain and the beta-sandwich domain to prevent pre-stem rearrangement and membrane insertion. Among the four mutants, alphaHL-A is remarkably stable, is produced at a level at least 10-fold greater than that of the wild-type protein, is monomeric in aqueous solution, and has hemolytic activity that can be regulated by the presence or absence of reducing agents. Cross-linking analysis showed that alphaHL-A assembles on a membrane into an oligomer, which is likely to be a heptamer, in the absence of a reducing agent, suggesting that oxidized alphaHL-A is halted at a heptameric prepore state. Therefore, conformational rearrangements at positions 108 and 154 are critical for the completion of alphaHL assembly but are not essential for membrane binding or for formation of an oligomeric prepore intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号