首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1108篇
  免费   67篇
  国内免费   200篇
  1375篇
  2024年   5篇
  2023年   20篇
  2022年   22篇
  2021年   26篇
  2020年   34篇
  2019年   28篇
  2018年   31篇
  2017年   36篇
  2016年   36篇
  2015年   25篇
  2014年   33篇
  2013年   63篇
  2012年   47篇
  2011年   76篇
  2010年   26篇
  2009年   59篇
  2008年   54篇
  2007年   68篇
  2006年   57篇
  2005年   52篇
  2004年   43篇
  2003年   32篇
  2002年   50篇
  2001年   33篇
  2000年   31篇
  1999年   27篇
  1998年   26篇
  1997年   34篇
  1996年   38篇
  1995年   34篇
  1994年   20篇
  1993年   23篇
  1992年   28篇
  1991年   17篇
  1990年   28篇
  1989年   20篇
  1988年   18篇
  1987年   12篇
  1986年   12篇
  1985年   10篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1978年   2篇
  1977年   6篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1375条查询结果,搜索用时 15 毫秒
991.
Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co‐occurring stressors result in biological responses that cannot be predicted from single‐stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple‐stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow‐through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (?12% compared to controls) and condition (?8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (?25% compared to controls) and abundance of dominant invertebrate prey (?30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple‐stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations.  相似文献   
992.
There are many situations where it is desired to make simultaneous tests or give simultaneous confidence intervals for linear combinations (contrasts) of population or treatment means. Somerville (1997, 1999) developed algorithms for calculating the critical values for a large class of simultaneous tests and simultaneous confidence intervals. Fortran 90 and SAS‐IML batch programs and interactive programs were developed. These programs calculate the critical values for 15 different simultaneous confidence interval procedures (and the corresponding simultaneous tests) and for arbitrary procedures where the user specifies a combination of one and two sided contrasts. The programs can also be used to obtain the constants for “step‐down” testing of multiple hypotheses. This paper gives examples of the use of the algorithms and programs and illustrates their versatility and generality. The designs need not be balanced, multiple covariates may be present and there may be many missing values. The use of multiple regression and dummy variables to obtain the required variance covariance matrix is illustrated. Under weak normality assumptions the methods are “exact” and make the use of approximate methods or “simulation” unnecessary.  相似文献   
993.
Lee and Spurrier (1995) present one‐sided and two‐sided confidence interval procedures for making successive comparisons between ordered treatments. Their procedures have important applications for problems where the treatments can be assumed to satisfy a simple ordering, such as for a sequence of increasing dose‐levels of a drug. The two‐sided procedure provides both upper and lower bounds on the differences between successive treatments, whereas the one‐sided procedure only provides lower bounds on these differences. However, the one‐sided procedure allows sharper inferences regarding which treatments can be declared to be better than their previous ones. In this paper we apply the results obtained in Hayter , Miwa , and Liu (2000) to develop a new procedure which combines the good aspects of both the one‐sided and the two‐sided procedures. This new procedure maintains the inferential sensitivity of the one‐sided procedure while also providing both upper and lower bounds on the differences between successive treatments. Some new critical points are needed which are tabulated for the balanced case where the sample sizes are all equal. The application of the new procedure is illustrated with an example.  相似文献   
994.
A survey of nitric oxide (NO) emission from Chihuahuan desert soils found mean NO fluxes <0.1 ng NO-N cm–2h–1 during the dry season. These fluxes were at thelower end of the range reported for temperate grassland and woodlandecosystems. NO fluxes from wet or watered soils were higher(0.1–35 ng NO-N cm–2 h–1).Watering of black grama grassland soils produced an initial pulse of 12ng cm–2 h–1 (12-h after 1-cm watering)with high fluxes sustained over 4 days with repeated watering. Initialpulses from shrubland soils were lower (maximum 5 ngcm–2 h–1), and fluxes declined withrepeated watering. Repeated watering of creosotebush soils depleted thesoil NH 4 + pool, and NO emissions weredirectly related to soil NH 4 + concentrationsat the end of the experiment. In watered andNH 4 + -fertilized creosotebush soils, NO fluxeswere positively related to potential net nitrification rates.NH 4 + -fertilization boosted the initial NOpulse 15 times in the shrubland and 5 times in black grama grasslandrelative to watered controls. These experimental results point towardgreater substrate limitation in shrublands. In this desert basin, NOemission averaged 0.12 kg N ha–1 y–1in untreated soil and 0.76 kg N ha–1y–1 in watered soil. We multiplied these averages bythe distribution of grassland and shrubland vegetation within a58,600-ha area of the Jornada del Muerto basin to estimate regionallosses of 0.15–0.38 kg NO-N ha–1y–1 for this area of the Chihuahuan desert.  相似文献   
995.
Rosecrance  R.C.  McCarty  G.W.  Shelton  D.R.  Teasdale  J.R. 《Plant and Soil》2000,227(1-2):283-290
N mineralization, N immobilization and denitrification were determined for vetch, rye and rye-vetch cover crops using large packed soil cores. Plants were grown to maturity from seed in cores. Cores were periodically leached, allowing for quantification of NO3 and NH4 + production, and denitrification incubations were conducted before and after cover crop kill. Gas permeable tubing was buried at two depths in cores allowing for quantification of N2O in the soil profile. Cover crops assimilated most soil N prior to kill. After kill, relative rates of N mineralization were vetch > rye-vetch mixture > fallow > rye. After correcting for N mineralization from fallow cores, net N mineralization was observed in vetch and rye-vetch cores, while net N immobilization was observed in rye cores. Denitrification incubations were conducted 5, 15 and 55 days after kill, with adjustment of cores to 75% water filled pore space (WFPS). The highest denitrification was observed in vetch cores 5 days after kill, when soil NO3 and respiration rates were high. Substantially lower denitrification was observed on subsequent measurement dates and in other treatments probably due to either limited NO3 or organic carbon in the soil. On day 5, 3%, 23%, 31% and 31% of the N2O was recovered in the headspace of fallow, vetch, rye and rye-vetch cores, respectively. The rest was stored in the soil profile. In a field study using intact soil cores, denitrification rates also peaked 1 week after cover crop kill and decreased significantly thereafter. Results suggest greater potential N losses from vetch than rye or rye-vetch cover crops due to rapid N-mineralization in conjunction with denitrification and potential leaching, prior to significant crop N-assimilation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
996.
Bartoli  Marco  Nizzoli  Daniele  Welsh  David T.  Viaroli  Pierluigi 《Hydrobiologia》2000,431(2-3):165-174
The short-term effects of sediment recolonisation by Nereis succinea on sediment-water column fluxes of oxygen and dissolved inorganic nitrogen, and rates of denitrification, were studied in microcosms of homogenised, sieved sediments. The added worms enhanced oxygen uptake by the sediments, due to the increased surface area provided by the burrow walls and the degree of stimulation was stable with time. Similarly, ammonium fluxes to the water column were stimulated by N. succinea, but declined over the 3 day incubation in all microcosms including the controls. Nitrate fluxes were generally greater in the faunated microcosms, but highly variable with time. Denitrification rates were positively stimulated by N. succinea populations, denitrification of water column nitrate was stimulated 10-fold in comparison to denitrification coupled to nitrification in the sediments. Rates of denitrification of water column nitrate were not significantly different from rates in undisturbed sediment cores with similar densities of N. succinea, whereas rates of coupled nitrification–denitrification were 3-fold lower in the experimental set-up. These results may reflect the relative growth rates of nitrifying and denitrifying bacteria, which allow more rapid colonisation of new burrow surfaces by denitrifier compared to nitrifier populations. The data indicate that recolonisation by burrowing macrofauna of the highly reduced sediments of the Sacca di Goro, Lagoon, Italy, following the annual dystrophic crisis, may play a significant role in the reoxidation and detoxification of the sediments. The increased rates of denitrification associated with the worm burrows, may promote nitrogen losses, but due to the low capacity of nitrifying bacteria to colonise the new burrow structures, these losses would be highly dependent upon water column nitrate concentrations.  相似文献   
997.
A method for computing percentage points for the studentized maximum absolute deviate in normal samples is presented. Examples of the use of these points in the construction of simultaneous tests for a linear function of means, are given.  相似文献   
998.
Nitrate (NO 3 ) removal in riparian zones bordering agricultural areas occurs via plant uptake, microbial immobilisation and bacterial denitrification. Denitrification is a desirable mechanism for removal because the bacterial conversion of NO 3 to N gases permanently removes NO 3 from the watershed. A field and laboratory study was conducted in riparian soils adjacent to Carroll Creek, Ontario, Canada, to assess the spatial distribution of denitrification relative to microbial community structure and microbial functional diversity. Soil samples were collected in March, June, and August 1997 at varying soil depths and distances from the stream. Denitrification measurements made using the acetylene block technique on intact soil cores were highly variable and did not show any trends with riparian zone location. Microbial community composition and functional diversity were determined using sole carbon source utilization (SCSU) on Biolog® GN microplates. Substrate richness, evenness and diversity (Shannon index) were greatest within the riparian zone and may also have been influenced by a rhizosphere effect. A threshold relationship between denitrification and measures of microbial community structure implied minimum levels of richness, evenness and diversity were required for denitrification.  相似文献   
999.
Of the 29 potentially denitrifying organisms isolated from a denitrifying reactor (DNR) of a fertilizer company, two isolates; I-4 and I-5 were recognized as denitrifiers. Under aerobic conditions, with fusel oil as the carbon source, the organisms decreased nitrate from 1200 mg l–1 to 100 mg l–1 in 48 h. Optimal growth conditions for biological removal of nitrate were established in batch culture. The system was scaled up to 4-L and 50-L bioreactors under continuous culture conditions. Up to 95–100% nitrate removal was achieved in the 50-L bioreactor at a COD:NO3–N ratio of 3.45 with a retention time of 48 h. The isolates showed 1.5 fold higher denitrifying activity than reported previously.  相似文献   
1000.
Anthropogenic‐driven global change, including changes in atmospheric nitrogen (N) deposition and precipitation patterns, is dramatically altering N cycling in soil. How long‐term N deposition, precipitation changes, and their interaction influence nitrous oxide (N2O) emissions remains unknown, especially in the alpine steppes of the Qinghai–Tibetan Plateau (QTP). To fill this knowledge gap, a platform of N addition (10 g m−2 year−1) and altered precipitation (±50% precipitation) experiments was established in an alpine steppe of the QTP in 2013. Long‐term N addition significantly increased N2O emissions. However, neither long‐term alterations in precipitation nor the co‐occurrence of N addition and altered precipitation significantly affected N2O emissions. These unexpected findings indicate that N2O emissions are particularly susceptible to N deposition in the alpine steppes. Our results further indicated that both biotic and abiotic properties had significant effects on N2O emissions. N2O emissions occurred mainly due to nitrification, which was dominated by ammonia‐oxidizing bacteria, rather than ammonia‐oxidizing archaea. Furthermore, the alterations in belowground biomass and soil temperature induced by N addition modulated N2O emissions. Overall, this study provides pivotal insights to aid the prediction of future responses of N2O emissions to long‐term N deposition and precipitation changes in alpine ecosystems. The underlying microbial pathway and key predictors of N2O emissions identified in this study may also be used for future global‐scale model studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号