首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   233篇
  国内免费   76篇
  2199篇
  2024年   14篇
  2023年   59篇
  2022年   69篇
  2021年   94篇
  2020年   148篇
  2019年   132篇
  2018年   103篇
  2017年   100篇
  2016年   114篇
  2015年   105篇
  2014年   120篇
  2013年   178篇
  2012年   85篇
  2011年   120篇
  2010年   63篇
  2009年   128篇
  2008年   91篇
  2007年   110篇
  2006年   75篇
  2005年   65篇
  2004年   37篇
  2003年   21篇
  2002年   22篇
  2001年   14篇
  2000年   9篇
  1999年   10篇
  1998年   7篇
  1997年   7篇
  1996年   11篇
  1995年   10篇
  1994年   7篇
  1993年   9篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   4篇
  1979年   4篇
  1977年   1篇
  1972年   1篇
排序方式: 共有2199条查询结果,搜索用时 0 毫秒
91.
Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles. In this review, for the first time, we illustrate how to adapt site-directed chemical modification (SDCM) methods for immobilizing enzymes on iron-based MNP. These strategies are mainly chemical but may additionally require genetic and enzymatic methods. We critically examine each method and evaluate their scope for simple, quick, efficient, mild and economical immobilization of enzymes on MNP. The improvements in the catalytic properties of few available examples of immobilized enzymes are also discussed. We conclude the review with the applications and future prospects of site-selectively modified magnetic enzymes and potential benefits of this technology in improving enzymes, including cold-adapted homologues, modular enzymes, and CO2-sequestering, as well as non-iron based nanomaterials.  相似文献   
92.
In the present investigation fractioned cellular components like intact pigment bearing thylakoids/chloroplasts, carotenoids, protein, polysaccharides were extracted from the cyanobacterium Anabaena sphaerica and green alga Chlorococcum infusionum. Each of these extracts was used separately in search for efficient reducing agents during gold nanoparticle (GNP) production in pro‐ and eukaryotic algal cell systems. The whole biomass and extracted compounds or cellular structures were exposed in 25 mg L?1 aqueous hydrogen tetrachloroaurate solutions separately at room temperature. Isolated viable chloroplasts from C. infusionum and thylakoids from A. sphaerica were found to be able to reduce gold ions. The protein extracts of both strains were also able to synthesize GNP at 4°C. Extracted polysaccharides of the two strains responded differently. Polysaccharides from A. sphaerica showed positive response in GNP synthesis, whereas no change was observed for C. infusionum. The carotenoids extracts from both strains acted like an efficient reducing agent. Initially the reducing efficiency of these extracted components was confirmed by the appearance of purple color in biomass or in experimental media. The GNPs, synthesized within the biomass were extracted by sonication with sodium citrate. The UV–vis spectroscopy of extracted purple colored suspensions and media showed the absorption bands at approximately 530–540 nm indicating a strong positive signal of GNP synthesis. Transmission electro n microscopy determined the size and shapes of the particles. The X‐ray diffraction study of the synthesized GNP revealed that the 2θ values appeared at 38.2°, 44.5°, 64.8° and 77.8°. Amongst all, isolated thylakoids and chloroplast showed only spherical GNP production with variable size range at pH 4. Monodisperse GNPs were also synthesized by isolated thylakoids and chloroplast at pH 9. A detailed morphological change of gold treated biomass was revealed employing scanning electron microscopy. The fluorescent property of gold loaded cells was studied by fluorescence microscopy.  相似文献   
93.
A facile protocol to prepare highly effective and durable in-line enzyme bioreactors inside capillary electrophoresis (CE) columns was developed. To demonstrate the methodology, l-glutamic dehydrogenase (GLDH) was selected as the model enzyme. GLDH was first immobilized onto 38-nm-diameter gold nanoparticles (GNPs), and the functionalized GNPs were then assembled on the inner wall at the inlet end of the CE capillary treated with polyethyleneimine (PEI), producing an in-line GLDH bioreactor. Compared with a GLDH bioreactor prepared by immobilizing GLDH directly on PEI-treated capillary, the GNP-mediated bioreactor showed a higher enzymatic activity and a much better stability. The in-capillary enzyme bioreactor was proven to be very useful for screening of GLDH inhibitors deploying the GLDH-catalyzed α-ketoglutaric acid reaction. The screening assay was preliminarily validated by using a known GLDH inhibitor, namely perphenazine. A Z′ factor value of 0.95 (n = 10) was obtained, indicating that the screening results were highly reliable. Screening of GLDH inhibitors present in medicinal plant extracts by the proposed method was demonstrated. The inhibition percentages were found to be 53% for Radix scutellariae, 45% for Radix codonopsis, 37% for Radix paeoniae alba, and 0% for the other 22 extracts tested at a concentration of 0.6 mg extract/ml.  相似文献   
94.
In this work, a novel sandwich-type electrochemical immunosensor has been developed for simultaneous detection of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) based on metal ion labels. Gold nanoparticles decorated multiwall carbon nanotubes (AuNPs@MWCNTs) were used as carriers to immobilize secondary antibodies and distinguishable electrochemical tags of Pb2+ and Cd2+ to amplify the signals. Due to the intrinsic property of high surface-to-volume ratio, the AuNPs@MWCNTs could load numerous secondary antibodies and labels. Therefore, the multiplexed immunoassay exhibited good sensitivity and selectivity. Experimental results revealed that this sandwich-type immunoassay displayed an excellent linear response, with a linear range of 0.01 to 60 ng mL–1 for both analytes and detection limits of 3.0 pg mL–1 for CEA and 4.5 pg mL–1 for AFP (at a signal-to-noise ratio of 3). The method was successfully applied for the determination of AFP and CEA levels in clinical serum samples.  相似文献   
95.
Summary Transformation and regeneration procedures for obtaining transgenic Brassica rapa ssp. oleifera plants are described. Regeneration frequencies were increasedby using silver nitrate and by adjusting the duration of exposure to 2,4-D. For transformation, Agrobacterium tumefaciens strain EHA101 containing a binary plasmid with the neomycin phosphotransferase gene (NPT II) and the b-glucuronidase gene (GUS) was cocultivated with hypocotyl explants from the oilseed B. rapa cvs. Tobin and Emma. Transformed plants were obtained within three months of cocultivation. Transformation frequencies for the cultivars Tobin and Emma were 1–9%. Evidence for transformation was shown by NPT II dot blot assay, the GUS fluorometric assay, Southern analysis, and segregation of the kanamycin-resistance trait in the progeny. The transformation and regeneration procedure described here has been used routinely to transform two cultivars of B. rapa and 18 cultivars of B. napus.  相似文献   
96.
A sensitive chronocoulometric aptasensor for the detection of thrombin has been developed based on gold nanoparticle amplification. The functional gold nanoparticles, loaded with link DNA (LDNA) and report DNA (RDNA), were immobilized on an electrode by thrombin aptamers performing as a recognition element and capture probe. LDNA was complementary to the thrombin aptamers and RDNA was noncomplementary, but could combine with [Ru(NH3)6]3+ (RuHex) cations. Electrochemical signals obtained by RuHex that bound quantitatively to the negatively charged phosphate backbone of DNA via electrostatic interactions were measured by chronocoulometry. In the presence of thrombin, the combination of thrombin and thrombin aptamers and the release of the functional gold nanoparticles could induce a significant decrease in chronocoulometric signal. The incorporation of gold nanoparticles in the chronocoulometric aptasensor significantly enhanced the sensitivity. The performance of the aptasensor was further increased by the optimization of the surface density of aptamers. Under optimum conditions, the chronocoulometric aptasensor exhibited a wide linear response range of 0.1–18.5 nM with a detection limit of 30 pM. The results demonstrated that this nanoparticle-based amplification strategy offers a simple and effective approach to detect thrombin.  相似文献   
97.
TiO2 nanoparticles hazard is associated to their photocatalytic activity causing release of DNA damaging ROS (Reactive Oxygen Species), lipid peroxidation and skin damage. Various coatings have been proposed to minimize photocatalysis, while keeping the potential to block UV radiations. Uncoated and variously coated commercial nano-titania have been classified on the basis of UVB-induced lipoperoxidation of linoleic acid. A selection of the most and the least protective specimens was then examined by ESR (Electron Spin Resonance) to evidence the presence of surface paramagnetic centres and the release of ROS in aqueous suspensions (spin trapping). Paramagnetic centres and ROS were correlated with the extent of lipid peroxidation. When tested on porcine skin (mimicking the human one), titania acted as on linoleic acid. The combined use of lipid peroxidation of simple fatty acids with ESR analysis is here proposed as a possible screening tool for the evaluation of the potential toxicity of nano-titania in sunscreen preparations.  相似文献   
98.
Abstract

Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed.  相似文献   
99.
Laurentian Great Lakes Lake Sturgeon (Acipenser fulvescens) are hosts to lamprey species, including native Silver Lamprey (Ichthyomyzon unicuspis) and invasive Sea Lamprey (Petromyzon marinus). Silver Lamprey coevolved with Lake Sturgeon and cause negligible mortality, but Sea Lamprey can negatively affect Lake Sturgeon populations. Sea Lamprey abundance in Lake Erie has been above targets set by resource managers, with the St. Clair – Detroit River System (SCDRS) suspected as a source of Sea Lamprey production into Lake Erie. This study summarizes lamprey marking on Lake Sturgeon captured during agency assessment surveys in the SCDRS since 1996 and provides insight on the potential for Sea Lamprey to negatively affect Lake Sturgeon in the SCDRS. Lamprey marks (any lamprey species) were noted on 48.2% of Lake Sturgeon (2.5 marks/fish) and 3.3% of Lake Sturgeon assumed to be susceptible to mortality by Sea Lamprey (<760 mm TL; 0.06 marks/fish). Silver Lamprey were the only lamprey species found attached to Lake Sturgeon and there was no difference between oral disc diameters of Silver Lamprey and marks measured on Lake Sturgeon in Lake St. Clair and the lower St. Clair River (p = .45). Based on logistic regression, probability of at least one lamprey mark increased with Lake Sturgeon total length and was highest in Lake St. Clair. The probability of observing at least one lamprey mark on a 760 mm Lake Sturgeon was 8.1% or less for each sampling location in the SCDRS aside from Lake St. Clair (28.1%). Results suggest that parasitism of Lake Sturgeon by Sea Lamprey in the SCDRS is rare, particularly for Lake Sturgeon <760 mm TL. Low incidence of lamprey marks on Lake Sturgeon assumed to be susceptible to mortality from Sea Lamprey parasitism and zero occurrence of Sea Lamprey being observed attached to a Lake Sturgeon suggest Sea Lamprey at their current abundance likely have little effect on the Lake Sturgeon population in the SCDRS. Caution should be taken when using mark size to assign marks to lamprey species as there is substantial overlap among species oral disc diameters, potentially inflating the perceived impact of Sea Lamprey on Lake Sturgeon in areas with native lampreys.  相似文献   
100.
Here we developed a simple set-and-mix assay to perform high-throughput screening of protein kinase A (PKA) inhibitors from the LOPAC 1280 compound library. This assay is based on the color change of gold nanoparticles on aggregation induced by a cationic substrate peptide as coagulant. In spite of the simplicity of this assay system, this assay can be applied to drug screening based on cellular kinases. We successfully found several highly active inhibitors, including compounds that have not been reported before.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号