首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   41篇
  国内免费   36篇
  2024年   2篇
  2023年   4篇
  2021年   11篇
  2020年   21篇
  2019年   13篇
  2018年   21篇
  2017年   21篇
  2016年   19篇
  2015年   13篇
  2014年   36篇
  2013年   54篇
  2012年   24篇
  2011年   45篇
  2010年   34篇
  2009年   40篇
  2008年   35篇
  2007年   38篇
  2006年   39篇
  2005年   25篇
  2004年   27篇
  2003年   21篇
  2002年   27篇
  2001年   14篇
  2000年   16篇
  1999年   21篇
  1998年   8篇
  1997年   11篇
  1996年   20篇
  1995年   18篇
  1994年   12篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   7篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1985年   17篇
  1984年   7篇
  1983年   3篇
  1982年   10篇
  1981年   5篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有813条查询结果,搜索用时 15 毫秒
41.
Solid‐state sodium batteries (SSSBs) are promising electrochemical energy storage devices due to their high energy density, high safety, and abundant resource of sodium. However, low conductivity of solid electrolyte as well as high interfacial resistance between electrolyte and electrodes are two main challenges for practical application. To address these issues, pure phase Na3Zr2Si2PO12 (NZSP) materials with Ca2+ substitution for Zr4+ are synthesized by a sol‐gel method. It shows a high ionic conductivity of more than 10?3 S cm?1 at 25 °C. Moreover, a robust SSSB is developed by integrating sodium metal anodes into NZSP‐type monolithic architecture, forming a 3D electronic and ionic conducting network. The interfacial resistance is remarkably reduced and the monolithic symmetric cell displays stable sodium platting/striping cycles with low polarization for over 600 h. Furthermore, by combining sodium metal anode with Na3V2(PO4)3 cathode, an SSSB is demonstrated with high rate capability and excellent cyclability. After 450 cycles, the capacity of the cell is still kept at 94.9 mAh g?1 at 1 C. This unique design of monolithic electrolyte architecture provides a promising strategy toward realizing high‐performance SSSBs.  相似文献   
42.
Feng S  Pan C  Jiang X  Xu S  Zhou H  Ye M  Zou H 《Proteomics》2007,7(3):351-360
Immobilized metal affinity chromatography (IMAC) is a commonly used technique for phosphoproteome analysis due to its high affinity for adsorption of phosphopeptides. Miniaturization of IMAC column is essential for the analysis of a small amount of sample. Nanoscale IMAC column was prepared by chemical modification of silica monolith with iminodiacetic acid (IDA) followed by the immobilization of Fe3+ ion inside the capillary. It was demonstrated that Fe3+-IDA silica monolithic IMAC capillary column could specifically capture the phosphopeptides from tryptic digest of alpha-casein with analysis by MALDI-TOF MS. The silica monolithic IMAC capillary column was manually coupled with nanoflow RPLC/nanospray ESI mass spectrometer (muRPLC-nanoESI MS) for phosphoproteome analysis. The system was validated by analysis of standard phosphoproteins and then it was applied to the analysis of protein phosphorylation in mouse liver lysate. Besides MS/MS spectra, MS/MS/MS spectra were also collected for neutral loss peak. After database search and manual validation with conservative criteria, 29 singly phosphorylated peptides were identified by analyzing a tryptic digest of only 12 mug mouse liver lysate. The results demonstrated that the silica monolithic IMAC capillary column coupled with muRPLC-nanoESI MS was very suitable for the phosphoproteome analysis of minute sample.  相似文献   
43.
Even though amino acids are important trace components in the brewing of beers, they have not been extensively evaluated in these beverages. Studies involving the enantiomeric composition of these amino acids are even less prevalent. A brief summary of the brewing process for malt beverages is given. The total concentration and enantiomeric composition of three amino acids (leucine, phenylalanine, and proline) were determined in 25 different beers. Proline tended to have the highest average absolute concentration and the lowest percentage of the D -enantiomer in most samples. In some cases the relative amounts of D -phenylalanine and D -leucine exceeded 10% of the individual amino acids. The enantiomeric composition of the amino acids in different beer samples did not vary as extensively as the absolute concentrations. The reason for the concentration differences between proline and the other amino acids is discussed. A knowledge of amino acid concentrations and enantiomeric compositions appears to be useful in characterizing specific beers and brewing processes. © 1996 Wiley-Liss, Inc.  相似文献   
44.
Enantioselective HPLC methods have been developed for the resolution of (RS)-2-phenylcyclohexanone (compound 1) and (RS)-2-phenyltetrahydropyran-4-one (compound 4) and the diastereoselective and enantioselective separations of their respective cis- and trans-alcohols; reduction of compound 1 yields trans- and cis-2-phenyl-1-cyclohexanol (compounds 2 and 3, respectively) and reduction of compound 4 yields trans- and cis-2-phenyl-tetrahydropyran-4-ol (compounds 5 and 6, respectively). Compounds 1, 2, and 3 were stereochemically resolved using a chiral stationary phase (CSP) based upon amylose tris(3,5-dimethylphenyl carbamate) coated on 10 μm silica-gel (Chiralpak AD-CSP). Compounds 4, 5, and 6 were stereochemically resolved on a coupled column system where a column containing a CSP based upon cellulose tris(3,5-dimethylphenyl carbamate) coated on 5 μm silica (Chiralcel OD-H-CSP) was coupled in series to the AD-CSP. The strategy employed in the identification of the peaks in the respective chromatograms is also discussed in this presentation. Chirality 8:551–555, 1996. © 1997 Wiley-Liss, Inc.  相似文献   
45.
The anatomy and ontogeny of the gynoecium and nutlets of two Bulbostylis species with different micro-morphology, Bulbostylis capillaris sensu Barros and B. major, were analyzed. The specific aim of this work was to identify which part of the pericarp determines the differences in the nutlet surface between these two species. We found that pre-fertilization development is the same in both species, with differences between species appearing only after fertilization. In the nutlet of B. major, the exocarp forms a tuberculate primary sculpture that has nipple-like protuberances consisting of one conoidal silica body per cell, whereas the secondary sculpture is micro-granulose and is constituted by the cuticle. In the nutlet of B. capillaris, the primary sculpture is granulose and is formed by the presence of starch granules in the exocarp that do not degrade, whereas the secondary sculpture is smooth.  相似文献   
46.
Dynamic behaviour of inflorescence-bearing Triticale and Triticum stems   总被引:1,自引:0,他引:1  
Zebrowski J 《Planta》1999,207(3):410-417
The mechanical response of cereal plant shoots to loads caused by wind and gravity in the field is swaying in flexure around the vertical or near vertical transient equilibrium position determined by the stationary component of the wind pressure. The aim of this work was to characterise the kinematic and dynamic attributes and their interrelations in freely swaying inflorescence-bearing stems of wheat (Triticum aestivum L.) and Triticale. The fundamental natural frequency of the stems appeared to be considerably lower than predicted from the theory of vibration using the model of a cantilever beam oscillator and assuming the spring constant to be equal to the force-deflection ratio. Because of the rate of deformation and visco-elastic behaviour of the plant material, a discrepancy of about 10% was found between the dynamic and static stem bending resistance. The presence of the tip inflorescence caused vibrating vertical stems to behave as compressed columns in which the effective spring constant was strongly biased by the apical load due to the weight of the inflorescence. At the late milk stage, in the freely swaying stems of wheat and Triticale, the resistance to dynamic lateral loads was reduced by about 30% as a result of compression exerted by the inflorescence. So the prominent effect of the tip inflorescence on the dynamic behaviour (the effective spring constant and the natural frequency) of the stem is attributed to the non-negligible magnitude of the inflorescence weight relative to the critical load producing elastic buckling in slender vertical structures. Stem softening as a consequence of increasing inflorescence weight is assumed to be one of the essential factors reducing the lodging resistance in cereal crops at the late milk stage. The feasibility of the compressed-column approach for predicting the dynamic bending performance of slender vertical plant organs is discussed. Received: 4 March 1998 / Accepted: 20 July 1998  相似文献   
47.
BACKGROUND AND AIMS: The labellar papillae and trichomes of Maxillaria Ruiz & Pav. show great diversity. Although papillae also occur upon other parts of the flower (e.g. column and anther cap), these have not yet been studied. Labellar trichomes of Maxillaria are useful in taxonomy, but hitherto the taxonomic value of floral papillae has not been assessed. The aim of this paper is to describe the range of floral papillae found in Maxillaria and to determine whether papillae are useful as taxonomic characters. METHODS: Light microscopy, histochemistry, low-vacuum scanning and transmission electron microscopy. KEY RESULTS: A total of 75 taxa were studied. Conical papillae with rounded or pointed tips were the most common. The column and anther cap usually bear conical, obpyriform or villiform papillae, whereas those around the stigmatic surface and at the base of the anther are often larger and swollen. Labellar papillae show greater diversity, and may be conical, obpyriform, villiform, fusiform or clavate. Papillae may also occur on multiseriate trichomes that perhaps function as pseudostamens. Labellar papillae contain protein but most lack lipid. The occurrence of starch, however, is more variable. Many papillae contain pigment or act as osmophores, thereby attracting insects. Rewards such as nectar or a protein-rich, wax-like, lipoidal substance may be secreted by papillae onto the labellar surface. Some papillae may have a protective role in preventing desiccation. Species of diverse vegetative morphology may have identical floral papillae, whereas others of similar vegetative morphology may not. CONCLUSIONS: Generally, floral papillae in Maxillaria have little taxonomic value. Nevertheless, the absence of papillae from members of the M. cucullata alliance, the occurrence of clavate papillae with distended apices in the M. rufescens alliance and the presence of papillose trichomes in some species may yet prove to be useful.  相似文献   
48.
Chen S  Ward T 《Chirality》2004,16(5):318-330
A variety of compounds containing amines (i.e., amino acids, amino alcohols, etc.) were chemically derivatized with a variety of electrophilic tagging reagents to elucidate the chiral recognition sites on a teicoplanin-bonded chiral stationary phase (CSP) and on R-naphthylethylcarbamate-beta-cyclodextrin (RN-beta-CD)-bonded CSP. Solutes were separated under optimum chromatographic conditions on teicoplanin and RN-beta-CD CSPs for comparison using an acetonitrile-based mobile phase. It was noted that the size of the analyte or tagging reagent exerted a greater influence on compounds separated on teicoplanin than on RN-beta-CD when using the polar organic mode. This suggests that chiral recognition on teicoplanin CSP is more sensitive to size and indicates that the hydrophobic pocket of teicoplanin plays a significant role in chiral recognition in this mode. However, the type of functional groups had a greater impact than the size of analyte on separations obtained from RN-beta-CD phase in the polar-organic mode. Specifically, the pi-pi interaction was enhanced by derivatizing the aromatic ring of the tagging reagent with electron-withdrawing groups and thus altered the resolution substantially. For both phases, chiral recognition is most pronounced when the stereogenic center of the analyte is near the tagging moiety and surrounded by functional groups (e.g., carboxylic, etc.) which are favorable for hydrogen bonding.  相似文献   
49.
Dead cells of Saccharomyces cerevisiae 54 were immobilized by entrappment in polyacrylonitrile. The beads obtained were used to adsorb copper in an up-flow fixed-bed column. The effect of polymer content and cell loading were studied to optimize the porosity and the efficiency in copper removal of the biosorbent beads in a batch system. The optimal concentration of the polyacrylonitrile was assumed to be 12%(w/v) and a concentration of 0.5 g cell dry weight in 1 g polymer was most effective in adsorption of Cu2+. The adsorption capacity of this biosorbent was 27 mg Cu2+/g dry biomass at 200 mg/l initial concentration of copper ions. Adsorption of Cu2+ in a batch system was studied using different initial concentrations of the solute. The optimal conditions in the up-flow column of the following parameters were determined: flow rate, bed height, and initial concentration of Cu2+ of the solutions. Results of fixed-bed biosorption showed that breakthrough and saturation time appeared to increase with the bed height, but decrease with the flow rate and the initial concentration. The linearized form of the Thomas equation was used to describe dynamic adsorption of metal ions. As a result, the adsorption capacity of the batch system and the column system was compared. Desorption of copper ions was achieved by washing the column biomass with 0.1 M HCl at an eluent flow rate of 1 ml/min. The reusability of the immobilized biomass was tested in five consecutive adsorption-desorption cycles. The regenerated beads retained over 45% of their original adsorption capacity after five A/D cycles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
50.
Damming rivers changes sediment and nutrient cycles downstream of a dam in many direct and indirect ways. The Iron Gates I reservoir on the Yugoslavian-Romanian border is the largest impoundment by volume on the Danube River holding 3.2billionm3 of water. Silica retention within the reservoir in the form of diatom frustules was postulated to be as high as 600ktyear–1 in previous studies using indirect methods. This amount of dissolved silicate was not delivered to the coastal Black Sea, and presumably caused a shift in the phytoplankton community there, and subsequent drastic decline in fishery. We directly quantified the amount of dissolved silicate (DSi) entering and leaving the reservoir for 11 continuous months. The budget based on these data reveals two important facts: (1) only about 4% of incoming DSi was retained in the reservoir; (2) the DSi concentrations were relatively low in the rivers upstream of the reservoir compared to regional and global averages. Thus damming the Danube at the Iron Gates could not have caused the decline in DSi concentrations documented downstream of the impoundment. Rather, this change in DSi must have occurred in the headwaters of the Danube River. Potential reasons include the construction of many dams upstream of the Iron Gates, hydrologic changes resulting in lower groundwater levels, and clogging of the riverbed limiting groundwater–river exchange.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号