首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5845篇
  免费   75篇
  国内免费   91篇
  6011篇
  2024年   3篇
  2023年   17篇
  2022年   28篇
  2021年   40篇
  2020年   52篇
  2019年   54篇
  2018年   68篇
  2017年   56篇
  2016年   53篇
  2015年   125篇
  2014年   341篇
  2013年   389篇
  2012年   475篇
  2011年   730篇
  2010年   654篇
  2009年   257篇
  2008年   248篇
  2007年   263篇
  2006年   261篇
  2005年   225篇
  2004年   216篇
  2003年   187篇
  2002年   126篇
  2001年   63篇
  2000年   90篇
  1999年   104篇
  1998年   96篇
  1997年   88篇
  1996年   99篇
  1995年   96篇
  1994年   63篇
  1993年   53篇
  1992年   36篇
  1991年   43篇
  1990年   35篇
  1989年   25篇
  1988年   17篇
  1987年   21篇
  1986年   24篇
  1985年   29篇
  1984年   41篇
  1983年   27篇
  1982年   33篇
  1981年   17篇
  1980年   15篇
  1979年   4篇
  1978年   7篇
  1977年   6篇
  1974年   5篇
  1970年   1篇
排序方式: 共有6011条查询结果,搜索用时 15 毫秒
71.
Inflammatory bone diseases are characterized by the presence of pro-inflammatory cytokines that regulate bone turnover. Osteoprotegerin (OPG) is a soluble osteoblast-derived protein that influences bone resorption by inhibiting osteoclast differentiation and activation. In the present study, we demonstrate that interleukin-1beta and tumor necrosis factor alpha induce OPG mRNA production and OPG secretion by osteoblast-like MG-63 cells. Maximum induction of OPG secretion by either cytokine requires activation of the p38 mitogen activated protein kinase (MAPK) pathway but neither the p42/p44 (ERK) nor the c-Jun N-terminal MAPK pathways. Induction of OPG mRNA by either cytokine is also p38 MAPK dependent. Taken together, these data indicate that cytokine-induced OPG gene expression and protein secretion are differentially regulated by specific MAP kinase signal transduction pathways.  相似文献   
72.
Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF·FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM6), octasaccharide (HM8), and decasaccharide (HM10), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM8 and HM10 are significantly more potent than HM6 in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1·FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2·FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1·FGFR4 interaction site and a direct FGFR4·FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF·FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM8 relative to HM6 in stimulating FGF2·FGFR4 signaling correlates with the higher affinity of HM8 to bind and dimerize FGF2. Notably FGF2·HM8 exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF·FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.  相似文献   
73.
Cells from several different plant species synthesised a polyphosphoinositide (PPI)-like lipid when osmo-stressed. Synthesis was maximal after about 10 min and was stimulated by a variety of osmolytes. Using NaCl, the strongest response centred around 200 mM. The lipid was shown to be the novel PPI isomer phosphatidyl-inositol 3,5-bisphosphate [PtdIns-(3,5)P2] by analytical thin-layer chromatography and conversion to PtdIns(3,4,5)P3 using recombinant phosphoinositide 4-OH kinase. The results indicate that PtdIns-(3,5)P2 plays a role in a general osmo-signalling pathway in plants. Its potential role is discussed. Received: 6 November 1998 / Accepted: 14 December 1998  相似文献   
74.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   
75.
Sirtuins are the class III histone deacetylases that catalyze the deacetylation of acetyl-lysine residues of histones and other proteins using nicotinamide adenine dinucleotide (NAD+) as the cofactor. The reaction yields the deacetylated protein, nicotinamide, and 2’-O-acetyl-ADP-ribose. Three 9-fluorenylmethoxycarbonyl (Fmoc)-labeled peptides derived from the amino acid sequence of p53, Fmoc-KK(Ac)-NH2, Fmoc-KK(Ac)L-NH2, and Fmoc-RHKK(Ac)-NH2, were characterized as substrates for two of the human sirtuins: SIRT1 and SIRT2. The deacetylation was monitored by a validated capillary electrophoresis assay. Efficient deacetylation by SIRT1 and SIRT2 was demonstrated for all three peptide substrates. The kinetics of the enzymatic reaction was determined with the Michaelis constants (Km) varying between 16.7 and 34.6 μM for SIRT1 and between 34.7 and 58.6 μM for SIRT2. Resveratrol did not function as an activator for SIRT1 using the Fmoc-labeled peptides as SIRT substrates. The IC50 values of sirtinol using the three peptide substrates were determined. Further sirtuin inhibitors were also evaluated.  相似文献   
76.
In this work we present and compare the results of extensive molecular dynamics simulations of model systems comprising an Aβ1–40 peptide in water in interaction with short peptides (β-sheet breakers) mimicking the 17–21 region of the Aβ1–40 sequence. Various systems differing in the customized β-sheet breaker structure have been studied. Specifically we have considered three kinds of β-sheet breakers, namely Ac-LPFFD-NH2 and two variants thereof, one obtained by substituting the acetyl group with the sulfonic amino acid taurine (Tau-LPFFD-NH2) and a second novel one in which the aspartic acid is substituted by an asparagine (Ac-LPFFN-NH2). Thioflavin T fluorescence, circular dichroism, and mass spectrometry experiments have been performed indicating that β-sheet breakers are able to inhibit in vitro fibril formation and prevent the β sheet folding of portions of the Aβ1–40 peptide. We show that molecular dynamics simulations and far UV circular dichroism provide consistent evidence that the new Ac-LPFFN-NH2 β-sheet breaker is more effective than the other two in stabilizing the native α-helix structure of Aβ1–40. In agreement with these results thioflavin T fluorescence experiments confirm the higher efficiency in inhibiting Aβ1–40 aggregation. Furthermore, mass spectrometry data and molecular dynamics simulations consistently identified the 17–21 Aβ1–40 portion as the location of the interaction region between peptide and the Ac-LPFFN-NH2 β-sheet breaker.  相似文献   
77.
Summary Proton chemical shifts of a series of disordered linear peptides (H-Gly-Gly-X-Gly-Gly-OH, with X being one of the 20 naturally occurring amino acids) have been obtained using 1D and 2D 1H NMR at pH 5.0 as a function of temperature and solvent composition. The use of 2D methods has allowed some ambiguities in side-chain assignments in previous studies to be resolved. An additional benefit of the temperature data is that they can be used to obtain ‘random coil’ amide proton chemical shifts at any temperature between 278 and 318 K by interpolation. Changes of chemical shift as a function of trifluoroethanol concentration have also been determined at a variety of temperatures for a subset of peptides. Significant changes are found in backbone and side-chain amide proton chemical shifts in these ‘random coil’ peptides with increasing amounts of trifluoroethanol, suggesting that caution is required when interpreting chemical shift changes as a measure of helix formation in peptides in the presence of this solvent. Comparison of the proton chemical shifts obtained here for H-Gly-Gly-X-Gly-Gly-OH with those for H-Gly-Gly-X-Ala-OH [Bundi, A. and Wüthrich, K. (1979) Biopolymers, 18, 285–297] and for Ac-Gly-Gly-X-Ala-Gly-Gly-NH2 [Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S. and Sykes, B.D. (1995) J. Biomol. NMR, 5, 67–81] generally shows good agreement for CH protons, but reveals significant variability for NH protons. Amide proton chemical shifts appear to be highly sensitive to local sequence variations and probably also to solution conditions. Caution must therefore be exercised in any structural interpretation based on amide proton chemical shifts.  相似文献   
78.
 The New World primate Aotus nancymaae is susceptible to infection with the human malaria parasite Plasmodium falciparum and Plasmodium vivax and has therefore been recommended by the World Health Organization as a model for evaluation of malaria vaccine candidates. We present here a first step in the molecular characterization of the major histocompatibility complex (MHC) class II DRB genes of Aotus nancymaae (owl monkey or night monkey) by nucleotide sequence analysis of the polymorphic exon 2 segments. In a group of 15 nonrelated animals captivated in the wild, 34 MHC DRB alleles could be identified. Six allelic lineages were detected, two of them having human counterparts, while two other lineages have not been described in any other New World monkey species studied. As in the common marmoset, the diversity of DRB alleles appears to have arisen largely by point mutations in the β-pleated sheets and by frequent exchange of fixed sequence motifs in the α-helical portion. Pairs of alleles differing only at amino acid position b86 by an exchange of valine to glycine are present in Aotus, as in humans. Essential amino acid residues contributing to MHC DR peptide binding pockets number 1 and 4 are conserved or semiconserved between HLA-DR and Aona-DRB molecules, indicating a capacity to bind similar peptide repertoires. These results support fully our using Aotus monkeys as an animal model for evaluation of future subunit vaccine candidates. Received: 10 August 1999 / Revised: 11 October 1999  相似文献   
79.
微小RNAs(miRNAs)是一类内源性小型非编码RNA,可通过调控靶基因表达参与大多数生物学过程。近年来,miRNAs在肝癌发生发展进程中相关作用机制的研究逐渐深入,miRNAs作为其中关键调控因子和主要参与者,已成为肝癌早期诊断、靶向治疗和预后评估中的一个关键靶标。本文着重强调miRNAs在肝癌发生发展、多重耐药性中的作用以及作为肝癌潜在治疗靶点的价值,并就miRNAs在肝癌中的功能、分子作用通路以及应用三方面的相关研究进展进行综述。  相似文献   
80.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca(2+)-permeable channels and mediate numerous cellular functions. It is commonly assumed that TRPC channels are activated by stimulation of Gα(q)-PLC-coupled receptors. However, whether the Gα(q)-PLC pathway is the main regulator of TRPC4/5 channels and how other Gα proteins may regulate these channels are poorly understood. We previously reported that TRPC4/TRPC5 can be activated by Gα(i). In the current work, we found that Gα(i) subunits, rather than Gα(q), are the primary and direct activators of TRPC4 and TRPC5. We report a novel molecular mechanism in which TRPC4 is activated by several Gα(i) subunits, most prominently by Gα(i2), and TRPC5 is activated primarily by Gα(i3). Activation of Gα(i) by the muscarinic M2 receptors or expression of the constitutively active Gα(i) mutants equally and fully activates the channels. Moreover, both TRPC4 and TRPC5 are activated by direct interaction of their conserved C-terminal SESTD (SEC14-like and spectrin-type domains) with the Gα(i) subunits. Two amino acids (lysine 715 and arginine 716) of the TRPC4 C terminus were identified by structural modeling as mediating the interaction with Gα(i2). These findings indicate an essential role of Gα(i) proteins as novel activators for TRPC4/5 and reveal the molecular mechanism by which G-proteins activate the channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号