首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5843篇
  免费   74篇
  国内免费   91篇
  2024年   2篇
  2023年   16篇
  2022年   27篇
  2021年   40篇
  2020年   52篇
  2019年   54篇
  2018年   68篇
  2017年   56篇
  2016年   53篇
  2015年   125篇
  2014年   341篇
  2013年   389篇
  2012年   475篇
  2011年   730篇
  2010年   654篇
  2009年   257篇
  2008年   248篇
  2007年   263篇
  2006年   261篇
  2005年   225篇
  2004年   216篇
  2003年   187篇
  2002年   126篇
  2001年   63篇
  2000年   90篇
  1999年   104篇
  1998年   96篇
  1997年   88篇
  1996年   99篇
  1995年   96篇
  1994年   63篇
  1993年   53篇
  1992年   36篇
  1991年   43篇
  1990年   35篇
  1989年   25篇
  1988年   17篇
  1987年   21篇
  1986年   24篇
  1985年   29篇
  1984年   41篇
  1983年   27篇
  1982年   33篇
  1981年   17篇
  1980年   15篇
  1979年   4篇
  1978年   7篇
  1977年   6篇
  1974年   5篇
  1970年   1篇
排序方式: 共有6008条查询结果,搜索用时 31 毫秒
141.
Vav1 is physiologically active as a GDP/GTP nucleotide exchange factor (GEF) in the hematopoietic system. Its wild-type form was recently implicated in mammalian malignancies of hematologic and non-hematologic tissue origins. Moreover, it was recently identified as a mutated gene in human cancers of various origins. In this review we focus on the functional activities of several of the Vav1 mutants analyzed for their tumorigenic properties. We also discuss the relationship of the tested biochemical properties of Vav1 mutants, E59K, D517E and L801P, to their computer-based predicted properties. These comparisons further enhance the need for integration of computation-based structural analyses with experimental data in order to fully appreciate the activity of mutant proteins. Our comprehensive evaluation supports the classification of Vav1 as a bona fide oncogene in human cancers.  相似文献   
142.
143.
Sun light energy is used by plants to trigger their growth and development. However, an increase of UV-B light may lead to DNA damage. DNA photolyases are enzymes that repair the cyclobutane pyridine dimer (CPD) and 6–4 photoproduct lesions formed through UV irradiation of DNA. Many aspects of the repair process are under intense scientific investigation but still poorly understood. Here we have computationally analysed DNA-photolyases using the resonant recognition model (RRM), a physico-mathematical approach based on digital signal processing methods. The RRM proposes that protein interactions represent the transfer of resonant electromagnetic energy between interacting molecules at the particular frequency. Within this study we have determined photolyases characteristic frequency, “hot spots” amino acids corresponding to the functional mutations and functional active/binding sites, and designed photolyase peptide analogous. A mutual relationship between photolyase and p53 tumour suppressor protein has also been investigated. The results obtained provide new insights into the structure–function relationships of photolyase protein family.  相似文献   
144.
Abstract

The formation and stability of structural elements in two 5S rRNA molecules from wheat germ (WG) and lupin seeds (LS) as a function of Mg2+ concentration in solution was determined using the adiabatic differential scanning microcalorimetry (DSC). The experimentally determined thermodynamic parameters are compared with calculations using thermodynamic databases used for prediction of RNA structure. The 5S rRNA molecules which show minor differences in the nucleotide sequence display very different thermal unfolding profiles (DSC profiles). Numerical deconvolution of DSC profiles provided information about structural transformations that take place in both 5S rRNA molecules. A comparative analysis of DSC data and the theoretical thermodynamic models of the structure was used to establish a relationship between the constituting transitions found in the melting profiles and the unfolding of structural domains of the 5S rRNA and stability of its particular helical elements.

Increased concentration of Mg2+ ions induces additional internal interactions stabilising 5S rRNA structures found at low Na+ concentrations. Observed conformational transitions suggest a structural model in which the extension of helical region E dominates over the postulated tertiary interaction between hairpin loops. We propose that helix E is stabilised by a sequence of non-standard pairings extending this helix by the formation of tetra loop e and an almost total reduction of loop d between helices E and D. Two hairpin structures in both 5S rRNA molecules: the extended C-C' and the extended E-E'-E” hairpins appear as the most stable elements of the structure. The cooperativity of the unfolding of helixes in these 5S rRNA molecules changes already at 2 mM Mg2+.  相似文献   
145.
Abstract

Bacteria process and transmit signals simultaneously through several two-component/phos-phorelay networks using closely related proteins. Therefore discrimination against mismatches and discrete recognition between protein partners is an absolute requirement for producing the correct responses. We tried to address this issue by comparing and analyzing sequences from the helix-bundle regions of histidine kinases of Bacillus subtilis. Our analysis shows how conservation and variability in the sequences give rise to selective association and unique recognition. The observed pattern suggests that the chances for cross talk between non-partner proteins are extremely low, but cross talk could take place in special cases.  相似文献   
146.
In vivo phage display is a high-throughput method for identifying target ligands specific for different vascular beds. Targeting is possible due to the heterogeneous expression of receptors and other antigens in a particular vascular bed. Such expression is additionally influenced by the physiological or pathological status of the vasculature. In vivo phage display represents a technique that is usable in both, vascular mapping and targeted drug development. In this review, several important methodological aspects of in vivo phage display experiments are discussed. These include choosing an appropriate phage library, an appropriate animal model and the route of phage library administration. In addition, peptides or antibodies identified by in vivo phage display homing to specific types of vascular beds, including the altered vasculature present in several types of diseases are summarized. Still, confirmation in independent experiments and reproduction of identified sequences are needed for enhancing the clinical applicability of in vivo phage display research.  相似文献   
147.
Previously, we reported an acidification-dependent interaction of the endosomal vacuolar H+-ATPase (V-ATPase) with cytohesin-2, a GDP/GTP exchange factor (GEF), suggesting that it functions as a pH-sensing receptor. Here, we have studied the molecular mechanism of signaling between the V-ATPase, cytohesin-2, and Arf GTP-binding proteins. We found that part of the N-terminal cytosolic tail of the V-ATPase a2-subunit (a2N), corresponding to its first 17 amino acids (a2N(1–17)), potently modulates the enzymatic GDP/GTP exchange activity of cytohesin-2. Moreover, this peptide strongly inhibits GEF activity via direct interaction with the Sec7 domain of cytohesin-2. The structure of a2N(1–17) and its amino acids Phe5, Met10, and Gln14 involved in interaction with Sec7 domain were determined by NMR spectroscopy analysis. In silico docking experiments revealed that part of the V-ATPase formed by its a2N(1–17) epitope competes with the switch 2 region of Arf1 and Arf6 for binding to the Sec7 domain of cytohesin-2. The amino acid sequence alignment and GEF activity studies also uncovered the conserved character of signaling between all four (a1–a4) a-subunit isoforms of mammalian V-ATPase and cytohesin-2. Moreover, the conserved character of this phenomenon was also confirmed in experiments showing binding of mammalian cytohesin-2 to the intact yeast V-ATPase holo-complex. Thus, here we have uncovered an evolutionarily conserved function of the V-ATPase as a novel cytohesin-signaling receptor.  相似文献   
148.
p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820–843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation.  相似文献   
149.
150.
Covalently linked carboxyl-terminal segments of the β-amyloid peptide (Aβ) were tested for their qualification as minimal conformational epitopes of the naturally occurring human autoantibodies against β-amyloid (nAbs-Aβ). nAbs-Aβ specifically recognize the toxic oligomers of Aβ and not the monomeric or the fibrillar forms of Aβ. The synthetic dimers of Aβ(28–40) described herein mimic the toxic Aβ oligomers but are not kinetic intermediates with uncertain compositions. CD spectra identified a surprisingly rich conformational behavior of selected miniamyloids. We observed a highly cooperative conformational transition of β-sheet to α-helix upon the addition of the helix enforcing co-solvent hexafluoroisopropanol. The CD curves of dimer 9 resembled, in a completely reversible manner, the CD spectra measured during the irreversible fibrillation of the parent Aβ(1–40). Synthetic peptide epitopes with high affinities for nAbs-Aβ are needed to identify the physiological roles of nAbs-Aβ and are promising epitopes for vaccination experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号