首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3776篇
  免费   45篇
  国内免费   52篇
  3873篇
  2024年   3篇
  2023年   11篇
  2022年   20篇
  2021年   17篇
  2020年   24篇
  2019年   34篇
  2018年   23篇
  2017年   21篇
  2016年   20篇
  2015年   78篇
  2014年   234篇
  2013年   255篇
  2012年   361篇
  2011年   575篇
  2010年   546篇
  2009年   133篇
  2008年   138篇
  2007年   156篇
  2006年   154篇
  2005年   130篇
  2004年   129篇
  2003年   136篇
  2002年   90篇
  2001年   43篇
  2000年   60篇
  1999年   75篇
  1998年   68篇
  1997年   51篇
  1996年   48篇
  1995年   46篇
  1994年   35篇
  1993年   27篇
  1992年   20篇
  1991年   16篇
  1990年   20篇
  1989年   15篇
  1988年   7篇
  1987年   9篇
  1986年   9篇
  1985年   5篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1978年   1篇
排序方式: 共有3873条查询结果,搜索用时 10 毫秒
31.
脱落酸诱导气孔关闭的信号转导研究   总被引:8,自引:0,他引:8  
权宏  施和平  李玲 《植物学通报》2003,20(6):664-670
气孔保卫细胞是单个细胞水平研究ABA信号转导机制的一个模式系统。脱落酸(ABA)通过对保卫细胞生理生化状态、胞质Ca^2 浓度及其离子通道调节诱导气孔关闭过程。这个过程涉及的因素有:ROS、IP3、cADPR、蛋白质的可逆磷酸化等。  相似文献   
32.
33.
Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in various cellular biochemical reactions. To date the signaling pathways that regulate NAD(+) metabolism remain unclear due to the dynamic nature and complexity of the NAD(+) metabolic pathways and the difficulty of determining the levels of the interconvertible pyridine nucleotides. Nicotinamide riboside (NmR) is a key pyridine metabolite that is excreted and re-assimilated by yeast and plays important roles in the maintenance of NAD(+) pool. In this study we establish a NmR-specific reporter system and use it to identify yeast mutants with altered NmR/NAD(+) metabolism. We show that the phosphate-responsive signaling (PHO) pathway contributes to control NAD(+) metabolism. Yeast strains with activated PHO pathway show increases in both the release rate and internal concentration of NmR. We further identify Pho8, a PHO-regulated vacuolar phosphatase, as a potential NmR production factor. We also demonstrate that Fun26, a homolog of human ENT (equilibrative nucleoside transporter), localizes to the vacuolar membrane and establishes the size of the vacuolar and cytosolic NmR pools. In addition, the PHO pathway responds to depletion of cellular nicotinic acid mononucleotide (NaMN) and mediates nicotinamide mononucleotide (NMN) catabolism, thereby contributing to both NmR salvage and phosphate acquisition. Therefore, NaMN is a putative molecular link connecting the PHO signaling and NAD(+) metabolic pathways. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes.  相似文献   
34.
In caulonemal filaments of the mossPhyscomitrella patens (Hedw.), red light triggers a phytochrome-mediated transient depolarisation of the plasma membrane and the formation of side branch initials. Three-electrode voltage clamp and ion flux measurements were employed to elucidate the ionic mechanism and physiological relevance of the red-light-induced changes in ion transport. Current-voltage analyses indicated that ion channels permeable to K+ and Ca2+ are activated at the peak of the depolarisation. Calcium influx evoked by red light coincided with the depolarisation in various conditions, suggesting the involvement of voltage-gated Ca2+ channels. Respective K+ fluxes showed a small initial influx followed by a dramatic transient efflux. A role of anion channels in the depolarising current is suggested by the finding that Cl efflux was also increased after red light irradiation. In the presence of tetraethylammonium (10 mM) or niflumic acid (1 M), which block the red-light-induced membrane depolarisation and ion fluxes, the red-light-promoted formation of side branch initials was also abolished. Lanthanum (100 M), which inhibits K+ fluxes and part of the initial Ca2+ influx activated by red light, reduced the development of side branch initials in red light by 50%. The results suggest a causal link between the red-light-induced ion fluxes and the physiological response. The sequence of events underlying the red-light-triggered membrane potential transient and the role of ion transport in stimulus-response coupling are discussed in terms of a new model for ion-channel interaction at the plasma membrane during signalling.Abbreviations [Ca2+]c cytosolic free Ca2+ - I-V current-voltage - E equilibrium potential - Pr red-light-absorbing phytochrome form - Pr far-red-light-absorbing phytochrome form - SPQ 6-methoxy-l-(3-sulphonatopropyl)quinolinium - TEA tetraethylammonium  相似文献   
35.
36.
37.
The cellular response to environmental stimuli requires biochemical information processing through which sensory inputs and cellular status are integrated and translated into appropriate responses by way of interacting networks of enzymes. One such network, the mitogen-activated protein (MAP) kinase cascade is a highly conserved signal transduction module that propagates signals from cell surface receptors to various cytosolic and nuclear targets by way of a phosphorylation cascade. We have investigated the potential for signal processing within a network of interacting feed-forward kinase cascades typified by the MAP kinase cascade. A genetic algorithm was used to search for sets of kinetic parameters demonstrating representative key input-output patterns of interest. We discuss two of the networks identified in our study, one implementing the exclusive-or function (XOR) and another implementing what we refer to as an in-band detector (IBD) or two-sided threshold. These examples confirm the potential for logic and amplitude-dependent signal processing in interacting MAP kinase cascades demonstrating limited cross-talk. Specifically, the XOR function allows the network to respond to either one, but not both signals simultaneously, while the IBD permits the network to respond exclusively to signals within a given range of strength, and to suppress signals below as well as above this range. The solution to the XOR problem is interesting in that it requires only two interacting pathways, crosstalk at only one layer, and no feedback or explicit inhibition. These types of responses are not only biologically relevant but constitute signal processing modules that can be combined to create other logical functions and that, in contrast to amplification, cannot be achieved with a single cascade or with two non-interacting cascades. Our computational results revealed surprising similarities between experimental data describing the JNK/MKK4/MKK7 pathway and the solution for the IBD that evolved from the genetic algorithm. The evolved IBD not only exhibited the required non-monotonic signal strength-response, but also demonstrated transient and sustained responses that properly reflected the input signal strength, dependence on both of the MAPKKs for signaling, phosphorylation site preferences by each of the MAPKKs, and both activation and inhibition resulting from the overexpression of one of the MAPKKs.  相似文献   
38.
Although short-acting and long-acting inhaled β(2)-adrenergic receptor agonists (SABA and LABA, respectively) relieve asthma symptoms, use of either agent alone without concomitant anti-inflammatory drugs (corticosteroids) may increase the risk of disease exacerbation in some patients. We found previously that pretreatment of human precision-cut lung slices (PCLS) with SABA impaired subsequent β(2)-agonist-induced bronchodilation, which occurred independently of changes in receptor quantities. Here we provide evidence that prolonged exposure of cultured human airway smooth muscle (HuASM) cells to β(2)-agonists directly augments procontractile signaling pathways elicited by several compounds including thrombin, bradykinin, and histamine. Such treatment did not increase surface receptor amounts or expression of G proteins and downstream effectors (phospholipase Cβ and myosin light chain). In contrast, β-agonists decreased expression of regulator of G protein signaling 5 (RGS5), which is an inhibitor of G-protein-coupled receptor (GPCR) activity. RGS5 knockdown in HuASM increased agonist-evoked intracellular calcium flux and myosin light chain (MLC) phosphorylation, which are prerequisites for contraction. PCLS from Rgs5(-/-) mice contracted more to carbachol than those from WT mice, indicating that RGS5 negatively regulates bronchial smooth muscle contraction. Repetitive β(2)-agonist use may not only lead to reduced bronchoprotection but also to sensitization of excitation-contraction signaling pathways as a result of reduced RGS5 expression.  相似文献   
39.
Eosinophils are multifunctional leukocytes implicated in the pathogenesis of numerous inflammatory diseases including allergic asthma and hypereosinophilic syndrome. Eosinophil physiology is critically dependent on IL-5 and the IL-5 receptor (IL-5R), composed of a ligand binding α chain (IL-5Rα), and a common β chain, βc. Previously, we demonstrated that the βc cytoplasmic tail is ubiquitinated and degraded by proteasomes following IL-5 stimulation. However, a complete understanding of the role of βc ubiquitination in IL-5R biology is currently lacking. By using a well established, stably transduced HEK293 cell model system, we show here that in the absence of ubiquitination, βc subcellular localization, IL-5-induced endocytosis, turnover, and IL-5R signaling were significantly impaired. Whereas ubiquitinated IL-5Rs internalized into trafficking endosomes for their degradation, ubiquitination-deficient IL-5Rs accumulated on the cell surface and displayed blunted signaling even after IL-5 stimulation. Importantly, we identified a cluster of three membrane-proximal βc lysine residues (Lys(457), Lys(461), and Lys(467)) whose presence was required for both JAK1/2 binding to βc and receptor ubiquitination. These findings establish that JAK kinase binding to βc requires the presence of three critical βc lysine residues, and this binding event is essential for receptor ubiquitination, endocytosis, and signaling.  相似文献   
40.
Dhawan S 《Peptides》2002,23(12):2099-2110
Spherical polystyrene microparticles expressing a large number of highly reactive functional groups were chemically engineered to generate antibody–enzyme conjugates as novel signal amplification systems. Chemically modified goat anti-human IgG and horseradish peroxidase (HRP) were combined in a 1:5 ratio and attached to 0.44 μm streptavidin microparticles or N-succinimidyl-S-acetylthioacetate (SATA)-activated 0.29 μm amino microparticles with highly reactive free sulfhydryl groups on their surface. The numbers of HRP molecules/microparticle were further increased by coupling HRP to primary amines on N-terminal biotinylated or bromoacetylated polypeptides containing 20 lysine residues prior to conjugation with streptavidin or sulfhydryl groups-containing microparticles. The antibody–poly-HRP immunoconjugates contained an estimated number of 105 HRP/streptavidin microparticle and 106 HRP/amino microparticle, respectively. These microparticle immunoconjugates efficiently bound to plasma anti-HIV-1 antibodies that had been captured by HIV antigens on 5 μm carboxyl magnetic microparticles and, upon reaction with orthophenyldiamine substrate, produced a detection signal with 5–8 times more sensitivity as compared to conventional HRP-conjugated goat anti-human IgG. The signal amplification technique by microparticle immunoconjugates may provide potentially novel tools for the development of highly sensitive diagnostic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号