首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
  国内免费   2篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   4篇
  2014年   9篇
  2013年   2篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
11.
Sialic acids play important roles in various biological processes and typically terminate the oligosaccharide chains on the cell surfaces of a wide range of organisms, including mammals and bacteria. Their attachment is catalyzed by a set of sialyltransferases with defined specificities both for their acceptor sugars and the position of attachment. However, little is known of how this specificity is encoded. The structure of the bifunctional sialyltransferase Cst-II of the human pathogen Campylobacter jejuni in complex with CMP and the terminal trisaccharide of its natural acceptor (Neu5Ac-α-2,3-Gal-β-1,3-GalNAc) has been solved at 1.95 Å resolution, and its kinetic mechanism was shown to be iso-ordered Bi Bi, consistent with its dual acceptor substrate specificity. The trisaccharide acceptor is seen to bind to the active site of Cst-II through interactions primarily mediated by Asn-51, Tyr-81, and Arg-129. Kinetic and structural analyses of mutants modified at these positions indicate that these residues are critical for acceptor binding and catalysis, thereby providing significant new insight into the kinetic and catalytic mechanism, and acceptor specificity of this pathogen-encoded bifunctional GT-42 sialyltransferase.  相似文献   
12.
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.  相似文献   
13.
Neural cell adhesion molecules (NCAMs) play critical roles during development of the nervous system. The aim of this study is to investigate the possible effect of ethanol exposure on the pattern of expression and sialylation of NCAM isoforms during postnatal rat brain development because alterations in NCAM content and distribution have been associated with defects in cell migration, synapse formation, and memory consolidation, and deficits in these processes have been observed after in utero alcohol exposure. The expression of NCAM isoforms in the developing cerebral cortex of pups from control and alcohol-fed mothers was assessed by western blotting, ribonuclease protection assay, and immunocytochemistry. The highly sialylated form of NCAM [polysialic acid (PSA)-NCAM] is mainly expressed during the neonatal period and then is down-regulated in parallel with the appearance of NCAM 180 and NCAM 140. Ethanol exposure increases PSA-NCAM levels during the neonatal period, delays the loss of PSA-NCAM, decreases the amount of NCAM 180 and NCAM 140 isoforms, and reduces sialyltransferase activity during postnatal brain development. Neuraminidase treatment of ethanol-exposed neonatal brains leads to more intense band degradation products, suggesting a higher content of NCAM polypeptides carrying PSA in these samples. However, NCAM mRNA levels are not changed by ethanol. Immunocytochemical analysis demonstrates that ethanol triggers an increase in PSA-NCAM immunolabeling in the cytoplasm of astroglial cells, accompanied by a decrease in immunogold particles over the plasma membrane. These findings indicate that ethanol exposure during brain development alters the pattern of NCAM expression and suggest that modification of NCAM could affect neuronal-glial interactions that might contribute to the brain defects observed after in utero alcohol exposure.  相似文献   
14.
Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx—crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid.  相似文献   
15.
Sialyltransferase has been characterized in P2 pellets derived from animals of increasing age. The enzyme was found to be associated with the plasma membrane and to be developmentally regulated at times coincident with cell migration and fibre outgrowth. This regulation appeared to be due, in part, to an endogenous competitive inhibitor in the P2 pellet but not in the synaptosome. Optimal transfer of [14C]N-acetylneuraminic acid to endogenous synaptosomal acceptors was achieved only in the absence of detergent. Furthermore, the transferred sialic acid was found to be inaccessible to the action of membrane-bound sialidase. The significance of these findings is discussed.  相似文献   
16.
We investigated the acceptor substrate specificities of marine bacterial α-(2→3)-sialyltransferase cloned from Photobacterium sp. JT-ISH-224 and α-(2→6)-sialyltransferase cloned from Photobacterium damselae JT0160 using several saccharides as acceptor substrates. After purifying the enzymatic reaction products, we confirmed their structure by NMR spectroscopy. The α-(2→3)-sialyltransferase transferred N-acetylneuraminic acid (Neu5Ac) from cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) to the β-anomeric hydroxyl groups of mannose (Man) and α-Manp-(1→6)-Manp, and α-(2→6)-sialyltransferase transferred N-acetylneuraminic acid to the 6-OH groups of the non-reducing end galactose residues in β-Galp-(1→3)-GlcpNAc and β-Galp-(1→6)-GlcpNAc.  相似文献   
17.
Gangliosides, complex glycosphingolipids containing sialic acids, are synthesized in the endoplasmic reticulum and in the Golgi complex. These neobiosynthesized gangliosides move via vesicular transport to the plasma membrane, becoming components of the external leaflet. Gangliosides can undergo endocytosis followed by recycling to the cell surface or sorting to the Golgi complex or lysosomes for remodeling and catabolism. Recently, glycosphingolipid catabolic enzymes (glycohydrolases) have been found to be associated with the plasma membrane, where they display activity on the membrane components. In this work, we demonstrated that ecto-ganglioside glycosyltransferases may catalyze ganglioside synthesis outside the Golgi compartment, particularly at the cell surface. Specifically, we report the first direct evidence of expression and activity of CMP-NeuAc:GM3 sialyltransferase (Sial-T2) at the cell surface of epithelial and melanoma cells, with membrane-integrated ecto-Sial-T2 being able to sialylate endogenously synthesized GM3 ganglioside as well as exogenously incorporated substrate. Interestingly, we also showed that ecto-Sial-T2 was able to synthesize GD3 ganglioside at the cell surface using the endogenously synthesized cytidine monophospho-N-acetylneuraminic acid (CMP-NeuAc) available at the extracellular milieu. In addition, the expression of UDP-GalNAc:LacCer/GM3/GD3 N-acetylgalactosaminyltransferase (GalNAc-T) was also detected at the cell surface of epithelial cells, whose catalytic activity was only observed after feeding the cells with exogenous GM3 substrate. Thus, the relative interplay between the plasma membrane-associated glycosyltransferase and glycohydrolase activities, even when acting on a common substrate, emerges as a potential level of regulation of the local glycosphingolipid composition in response to different external and internal stimuli.  相似文献   
18.
Gallic acid (GA) and several gallate derivatives were identified as inhibitors of fucosyltransferase VII (FucT VII). The inhibition by GA and (-)-epigallocatechin gallate (EGCG) is time-dependent and irreversible. GA and EGCG showed inhibition with IC(50) of 60 and 700 nM, respectively, after pre-incubation with FucT VII in the presence of MnCl(2). Absence of MnCl(2) results in significantly weaker inhibition. Complexation of Mn(2+) with GA, EGCG, and gallate esters was observed. Such complexation, however, is not rate-limiting for the inhibition of FucT VII. Therefore, time-dependent inhibition of fucosyltransferases by GA and EGCG is likely due to the slow inactivation by the inhibitors or Mn-inhibitor complex. Although Mg(2+) or Ca(2+) can replace Mn(2+) for FucT VII activation, none forms a complex with GA or EGCG and hence results in weaker inhibition of FucT VII. GA and EGCG also inhibit FucT IV and alpha2,3-(N)-sialyltransferase in the low micromolar range. The structure-function divergence could be observed, as EGCG, but not GA or gallate esters, inhibits Zn(2+) containing metalloproteases such as TNFalpha convertase, matrix metalloproteases 2 and 7.  相似文献   
19.
We reported the synthesis of beta-D-lactosaminide with a 2-aminopyridyl group that is linked to a glycosyl tether at the reducing end. This fluorescent disaccharide acts as an acceptor for both alpha-(2-->6)- and alpha-(2-->3)-sialyltransferases. In addition, the acceptor ability of this disaccharide was evaluated and compared with that of beta-D-lactosaminide having a dansyl or a 4-methylumbelliferyl group.  相似文献   
20.
Sialic acid at the terminus of cell surface glycoconjugates is a critical element in cell-cell recognition, receptor binding and immune responses. Sialyltransferases (ST), the enzymes responsible for the biosynthesis of sialylated glycans are highly upregulated in cancer and the resulting hypersialylation of the tumour cell surface correlates strongly with tumour growth, metastasis and drug resistance. Inhibitors of human STs, in particular human ST6Gal I, are thus expected to be valuable chemical tools for the discovery of novel anticancer drugs. Herein, we report on the computationally-guided design and development of uridine-based inhibitors that replace the charged phosphodiester linker of known ST inhibitors with a neutral carbamate to improve pharmacokinetic properties and synthetic accessibility. A series of 24 carbamate-linked uridyl-based compounds were synthesised by coupling aryl and hetaryl α-hydroxyphosphonates with a 5′-amino-5′-deoxyuridine fragment. The inhibitory activities of the newly synthesised compounds against recombinant human ST6Gal I were determined using a luminescent microplate assay, and five promising inhibitors with Ki’s ranging from 1 to 20 µM were identified. These results show that carbamate-linked uridyl-based compounds are a potential new class of readily accessible, non-cytotoxic ST inhibitors to be further explored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号