首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34050篇
  免费   2867篇
  国内免费   1020篇
  37937篇
  2024年   88篇
  2023年   480篇
  2022年   702篇
  2021年   1104篇
  2020年   1318篇
  2019年   1669篇
  2018年   1420篇
  2017年   955篇
  2016年   938篇
  2015年   1238篇
  2014年   2021篇
  2013年   2160篇
  2012年   1237篇
  2011年   1662篇
  2010年   1172篇
  2009年   1547篇
  2008年   1654篇
  2007年   1610篇
  2006年   1578篇
  2005年   1361篇
  2004年   1184篇
  2003年   992篇
  2002年   862篇
  2001年   636篇
  2000年   592篇
  1999年   444篇
  1998年   491篇
  1997年   476篇
  1996年   510篇
  1995年   498篇
  1994年   477篇
  1993年   428篇
  1992年   442篇
  1991年   379篇
  1990年   371篇
  1989年   325篇
  1988年   281篇
  1987年   279篇
  1986年   227篇
  1985年   277篇
  1984年   267篇
  1983年   140篇
  1982年   239篇
  1981年   194篇
  1980年   177篇
  1979年   175篇
  1978年   113篇
  1977年   115篇
  1976年   106篇
  1973年   80篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
研究用于癌症诊断与治疗的光敏剂血卟啉(hematoporphyrin derivative,HPD)的超快光动力学过程,采用超短脉冲激光光谱技术和皮秒时间相关单光子计数系统,测量经血卟啉培养的活体癌细胞与正常细胞的荧光光谱、荧光寿命特性及荧光峰值强度随时间变化曲线,并测量单一细胞内部不同位置的荧光寿命特性,观测到:癌细胞样品在645 nm处具有特有的光谱谱峰;癌细胞样品荧光寿命的快成分约150 ps慢成分约1200 ps,而正常细胞样品快成分约300 ps慢成分约2500 ps;癌细胞样品的荧光峰值强度经12小时衰减约10%,而正常细胞样品衰减约55%;在细胞内部荧光寿命300 ps的快成分十分显著,且中心部位血卟啉浓度最高.癌细胞与正常细胞的荧光光谱、荧光寿命特性及荧光峰值强度随时间变化曲线相差十分明显,反映了癌细胞与正常细胞对血卟啉亲和特性有显著的差异,测量结果确认了荧光光谱技术诊断与治疗癌症的可行性,并对发展超短脉冲激光光谱技术早期诊断与治疗癌症具有重要的指导意义和临床应用价值.  相似文献   
992.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   
993.
Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.  相似文献   
994.
Glutamate, a major excitatory neurotransmitter in the CNS, plays a critical role in neurological disorders such as stroke and Parkinson's disease. Recent studies have suggested that glutamate excess can result in a form of cell death called glutamate-induced oxytosis. In this study, we explore the protective effects of necrostatin-1 (Nec-1), an inhibitor of necroptosis, on glutamate-induced oxytosis. We show that Nec-1 inhibits glutamate-induced oxytosis in HT-22 cells through a mechanism that involves an increase in cellular glutathione (GSH) levels as well as a reduction in reactive oxygen species production. However, Nec-1 had no protective effect on free radical-induced cell death caused by hydrogen peroxide or menadione, which suggests that Nec-1 has no antioxidant effects. Interestingly, the protective effect of Nec-1 was still observed when cellular GSH was depleted by buthionine sulfoximine, a specific and irreversible inhibitor of glutamylcysteine synthetase. Our study further demonstrates that Nec-1 significantly blocks the nuclear translocation of apoptosis-inducing factor (a marker of caspase-independent programmed cell death ) and inhibits the integration of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (a pro-death member of the Bcl-2 family) into the mitochondrial membrane. Taken together, these results demonstrate for the first time that Nec-1 prevents glutamate-induced oxytosis in HT-22 cells through GSH related as well as apoptosis-inducing factor and Bcl-2/adenovirus E1B 19 kDa-interacting protein 3-related pathways.  相似文献   
995.
A spectrophotometric assay to determine peptide transport has been developed. Using two chromogenic peptide mimetics, L-phenylalanyl-L-2-sulfanilylglycine (PSG) and L-phenylalanyl-L-3-thiaphenylalanine (PSP), the peptide transport patterns in individual cell species can be evaluated effectively. After the addition of PSG to a HeLa cell suspension, sulfanilic acid accumulated progressively inside, but not outside, the cells, demonstrating that PSG was transported wholly intact. The addition of PSP to the same cell suspension was followed immediately by extracellular thiophenol production. Measurement of the rate of thiophenol release thereby provided direct determination of PSP transport. The thiophenol release was consistent with Michaelis-Menten kinetics, with a K(m) of 0.016 mM and a V(max) of 5.07 nmol/min (1 x 10(6) cells/ml, pH 7.4, 37 degrees C). The resulting kinetic constants estimated were in agreement with values determined by single-substrate enzyme kinetics. Using PSP, transport kinetics of various dipeptides was examined by competitive spectrophotometry. As a result, dipeptides tested could be ranked in order of kinetic power for their transport.  相似文献   
996.
It is known that insect kinins increase diuresis and fluid secretion in the Aedes aegypti Malpighian tubule, causing a rapid drop of the transepithelial resistance and increasing chloride conductance from the hemolymph towards the tubule lumen. The tubule is composed of both principal and stellate cells. The main route for increased chloride influx upon kinin treatment is proposed to be paracellular, with septate junctions acquiring increased chloride selectivity and conductance. Therefore, kinin treatment renders the Ae. aegypti tubule a “leaky epithelium”, and under this model the kinin receptor is postulated to be expressed in principal cells. However, in another dipteran, the fruit fly Drosophila melanogaster, the main route for chloride transport is transcellular through stellate cells. In both the fruit fly and the mosquito Anopheles stephensi the kinin receptor has been immunolocalized in stellate cells, where it regulates transepithelial chloride permeability. Here we show that in Ae. aegypti, similarly, the stellate cells express the kinin receptor. This was confirmed through immunohistochemistry with two specific anti-kinin receptor antibodies and confocal analysis. The receptor is detected as a 75 kDa band in western blot. These results indicate that the currently accepted model for chloride transport must be re-evaluated in Ae. aegypti and suggest the kinin regulatory signals controlling intercellular junctions originate in the stellate cells.  相似文献   
997.
Adult neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle (LV) has been most intensely studied within the brains of rodents such as mice and rats. However, little is known about the cell types and processes involved in adult neurogenesis within primates such as the common marmoset (Callithrix jacchus). Moreover, substantial differences seem to exist between the neurogenic niche of the LV between rodents and humans. Here, we set out to use immunohistochemical and autogradiographic analysis to characterize the anatomy of the neurogenic niches and the expression of cell type-specific markers in those niches in the adult common marmoset brain. Moreover, we demonstrate significant differences in the activity of neurogenesis in the adult marmoset brain compared to the adult mouse brain. Finally, we provide evidence for ongoing proliferation of neuroblasts within both the SGZ and SVZ of the adult brain and further show that the age-dependent decline of neurogenesis in the hippocampus is associated with a decrease in neuroblast cells.  相似文献   
998.
Mammalian cell lines for recombinant protein production need to maintain productivity over extended cultivation times. Long-term stability studies are time and resource intensive, but are widely performed to identify and eliminate unstable candidates during cell line development. Production instability of manufacturing cell lines can be associated with methylation and silencing of the heterologous promoter. We have identified CpG dinucleotides within the human cytomegalovirus major immediate early promoter/enhancer (hCMV-MIE) that are frequently methylated in unstable antibody-producing Chinese hamster ovary (CHO) cell lines. We have established methylation-specific real-time qPCR for the rapid and sensitive measurement of hCMV-MIE methylation in multiple cell lines and provide evidence that hCMV-MIE methylation and transgene copy numbers can be used as early markers to predict production instability of recombinant CHO cell lines. These markers should provide the opportunity to enrich stable producers early in cell line development and allow developers to put more emphasis on other criteria, such as product quality and bioprocess robustness.  相似文献   
999.
Xia D  Moyana T  Xiang J 《Cell research》2006,16(3):241-259
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号