首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34050篇
  免费   2867篇
  国内免费   1020篇
  37937篇
  2024年   88篇
  2023年   480篇
  2022年   702篇
  2021年   1104篇
  2020年   1318篇
  2019年   1669篇
  2018年   1420篇
  2017年   955篇
  2016年   938篇
  2015年   1238篇
  2014年   2021篇
  2013年   2160篇
  2012年   1237篇
  2011年   1662篇
  2010年   1172篇
  2009年   1547篇
  2008年   1654篇
  2007年   1610篇
  2006年   1578篇
  2005年   1361篇
  2004年   1184篇
  2003年   992篇
  2002年   862篇
  2001年   636篇
  2000年   592篇
  1999年   444篇
  1998年   491篇
  1997年   476篇
  1996年   510篇
  1995年   498篇
  1994年   477篇
  1993年   428篇
  1992年   442篇
  1991年   379篇
  1990年   371篇
  1989年   325篇
  1988年   281篇
  1987年   279篇
  1986年   227篇
  1985年   277篇
  1984年   267篇
  1983年   140篇
  1982年   239篇
  1981年   194篇
  1980年   177篇
  1979年   175篇
  1978年   113篇
  1977年   115篇
  1976年   106篇
  1973年   80篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
221.
222.
Abstract Listeria monocytogenes replicates in a phagocytic cell following escape into the host cytoplasm. Listeriolysin O, secreted by L. monocytogenes , which belongs to the thiol-activated hemolysin family, is known to play an important role in the escape of the bacterium into the host cytoplasm. In this study, we demonstrated that expression of listeriolysin O by infecting L. monocytogenes was lightly induced in J774.1 macrophage-like cells pretreated with lipopolysaccharide, although the growth of the bacteria was suppressed. The number of viable L. monocytogenes decreased until 4 h post-infection and then increased between 4 and 8 h post-infection in untreated J774.1 host cells, but it decreased until 8 h post-infection in lipopolysaccharide-treated host cells. However, expression of listeriolysin O by L. monocytogenes was not induced in the untreated host cells, while it increased between 0 and 4 h post-infection in the lipopolysaccharide-treated host cells. Expression of listeriolysin O mRNA in the lipopolysaccharide-treated host cells was also induced at 2 h post-infection, suggesting that listeriolysin O was newly synthesized in the macrophage-like cells. These results suggest that macrophage activation induced with lipopolysaccharide could lead to the expression of the listeriolysin O gene and the synthesis of listeriolysin O protein under suppression of the intracellular growth of L. monocytogenes .  相似文献   
223.
The insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor of central importance in cell proliferation. A fragment (residues 1-462) comprising the L1-cysteine rich-L2 domains of the human IGF-1R ectodomain has been overexpressed in glycosylation-deficient Lec8 cells and has been affinity-purified via a c-myc tag followed by gel filtration. The fragment was recognized by two anti-IGF-1R monoclonal antibodies, 24-31 and 24-60, but showed no detectable binding of IGF-1 or IGF-2. Isocratic elution of IGF-1R/462 on anion-exchange chromatography reduced sample heterogeneity, permitting the production of crystals that diffracted to 2.6 A resolution with cell dimensions a = 77.0 A, b = 99.5 A, c = 120.1 A, and space group P2(1)2(1)2(1).  相似文献   
224.
225.
Porcine induced pluripotent stem cells (iPSCs) provide useful information for translational research. The quality of iPSCs can be assessed by their ability to differentiate into various cell types after chimera formation. However, analysis of chimera formation in pigs is a labor‐intensive and costly process, necessitating a simple evaluation method for porcine iPSCs. Our previous study identified mouse embryonic stem cell (ESC)‐specific hypomethylated loci (EShypo‐T‐DMRs), and, in this study, 36 genes selected from these were used to evaluate porcine iPSC lines. Based on the methylation profiles of the 36 genes, the iPSC line, Porco Rosso‐4, was found closest to mouse pluripotent stem cells among 5 porcine iPSCs. Moreover, Porco Rosso‐4 more efficiently contributed to the inner cell mass (ICM) of blastocysts than the iPSC line showing the lowest reprogramming of the 36 genes (Porco Rosso‐622‐14), indicating that the DNA methylation profile correlates with efficiency of ICM contribution. Furthermore, factors known to enhance iPSC quality (serum‐free medium with PD0325901 and CHIR99021) improved the methylation status at the 36 genes. Thus, the DNA methylation profile of these 36 genes is a viable index for evaluation of porcine iPSCs. genesis 51:763–776. © 2013 Wiley Periodicals, Inc.  相似文献   
226.
Calcium channel family members activate at different membrane potentials which enables tissue specific calcium entry. Pore mutations affecting this voltage dependence are associated with channelopathies. In this review we analyze the link between voltage sensitivity and corresponding kinetic phenotypes of calcium channel activation. Systematic changes in hydrophobicity in the lower third of S6 segments gradually shift the activation curve thereby determining the voltage sensitivity. Homology modeling suggests that hydrophobic residues that are located in all four S6 segments close to the inner channel mouth might form adhesion points stabilizing the closed gate. Simulation studies support a scenario where voltage sensors and the pore are essentially independent structural units. We speculate that evolution designed the voltage sensing machinery as robust "all-or-non" device while the verity of voltage sensitivities of different channel types was accomplished by shaping pore stability.  相似文献   
227.
Fibrotic aortic valve disease (FAVD) is an important cause of aortic stenosis, yet currently there is no effective treatment for FAVD due to its unknown etiology. The purpose of this study was to investigate whether deficiency in the anti‐aging Klotho gene (KL) promotes high‐fat‐diet‐induced FAVD and to explore the underlying molecular mechanism. Heterozygous Klotho‐deficient (KL+/?) mice and WT littermates were fed with a high‐fat diet (HFD) or normal diet for 13 weeks, followed by treatment with the AMPKα activator (AICAR) for an additional 2 weeks. A HFD caused a greater increase in collagen levels in the aortic valves of KL+/? mice than of WT mice, indicating that Klotho deficiency promotes HFD‐induced aortic valve fibrosis (AVF). AMPKα activity (pAMPKα) was decreased, while protein expression of collagen I and RUNX2 was increased in the aortic valves of KL+/? mice fed with a HFD. Treatment with AICAR markedly attenuated HFD‐induced AVF in KL+/? mice. AICAR not only abolished the downregulation of pAMPKα but also eliminated the upregulation of collagen I and RUNX2 in the aortic valves of KL+/? mice fed with HFD. In cultured porcine aortic valve interstitial cells, Klotho‐deficient serum plus cholesterol increased RUNX2 and collagen I protein expression, which were attenuated by activation of AMPKα by AICAR. Interestingly, silencing of RUNX2 abolished the stimulatory effect of Klotho deficiency on cholesterol‐induced upregulation of matrix proteins, including collagen I and osteocalcin. In conclusion, Klotho gene deficiency promotes HFD‐induced fibrosis in aortic valves, likely through the AMPKα–RUNX2 pathway.  相似文献   
228.
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux ‘signatures’ during these stress conditions are poorly characterized. We investigated the kinetics of K+, Ca2+ and H+ ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non‐invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K+ efflux was observed following acute ER stress with peak K+ efflux being ?30·6 and ?138·7 nmolm?2 s?1 for 10 and 50 µg ml?1, respectively (p < 0·01). TM‐dependent Ca2+ uptake was more prolonged with peak values of 0·85 and 2·68 nmol m?2 s?1 for 10 and 50 µg ml?1 TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K+ efflux and Ca2+ uptake. While K+ changes were significantly higher at each time point tested, Ca2+ uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K+ efflux and Ca2+ uptake. Functional assays to investigate the effect of inhibiting K+ efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K+, Ca2+ and H+ ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
229.
230.
The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号