首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7201篇
  免费   460篇
  国内免费   184篇
  2024年   15篇
  2023年   100篇
  2022年   145篇
  2021年   172篇
  2020年   167篇
  2019年   220篇
  2018年   202篇
  2017年   161篇
  2016年   139篇
  2015年   199篇
  2014年   269篇
  2013年   444篇
  2012年   244篇
  2011年   270篇
  2010年   179篇
  2009年   237篇
  2008年   268篇
  2007年   302篇
  2006年   306篇
  2005年   330篇
  2004年   293篇
  2003年   272篇
  2002年   276篇
  2001年   222篇
  2000年   198篇
  1999年   160篇
  1998年   176篇
  1997年   191篇
  1996年   164篇
  1995年   146篇
  1994年   147篇
  1993年   149篇
  1992年   126篇
  1991年   113篇
  1990年   113篇
  1989年   124篇
  1988年   93篇
  1987年   70篇
  1986年   58篇
  1985年   80篇
  1984年   58篇
  1983年   31篇
  1982年   46篇
  1981年   41篇
  1980年   33篇
  1979年   32篇
  1978年   22篇
  1977年   11篇
  1976年   10篇
  1973年   8篇
排序方式: 共有7845条查询结果,搜索用时 15 毫秒
51.
The purpose of this study was to explore the role of singlet oxygen in cardiovascular injury. To accomplish this objective, we investigated the effect of singlet oxygen [generated from photoactivation of rose-bengal] on the calcium transport and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum and compared these results with those obtained by superoxide radical, hydrogen peroxide and hydroxyl radical. Isolated cardiac SR exposed to rose bengal (10 nM) irradiated at (560 nm) produced a significant inhibition of Ca 2+ uptake; from 2.27 ± 0.05 to 0.62 ± 0.05 µmol Ca+/mg.min (mean ± SE) (P < 0.01) and Ca2+-ATPase activity from 2.08 ± 0.05 µmol Pi/min. mg to 0.28 ± 0.04 µmol Pi/min. mg (mean ± SE) (P < 0.01). The inhibition of calcium uptake and Ca2+-ATPase activity by rose bengal derived activatedoxygen (singlet oxygen) was dependent on the duration of exposure and intensity of light. The singlet oxygen scavengers ascorbic acid and histidine significantly protected SR Ca2+-ATPase against rose bengal derived activated oxygen species but superoxide dismutase and catalase did not attenuate the inhibition. SDS-polyacrylamide gel electrophoresis of SR exposed to photoactivated rose bengal up to 14 min, demonstrated complete loss of Ca2+-ATPase monomer band which was significantly protected by histidine. Irradiation of rose bengal also caused an 18% loss of total sulfhydryl groups of SR. On the other hand, superoxide (generated from xanthine oxidase action on xanthine) and hydroxyl radical (0.5 mM H2O2 + Fe2+ -EDTA) as well as H2O2 (12 mM) were without any effect on the 97,000 dalton Ca2+-ATPase band ofsarcoplasmic reticulum. The results suggest that oxidative damage of cardiac sarcoplasmic reticulum may be mediated by singlet oxygen. This may represent an important mechanism by which the oxidative injury to the myocardium induces both a loss of tension development and arrhythmogenesis.  相似文献   
52.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   
53.
Radiolabelled calmodulin has previously been used to screen cDNA expression libraries to isolate calmodulin-binding proteins. We have modified this technique for the isolation of plant calmodulin-binding proteins. [35S]-methionine was used instead of the inorganic [35S]-sulfate, or125I used in previous methods. In addition, theE. coli pET expression system was chosen to obtain high levels of recombinant calmodulin at the time of labelling. The procedure thus takes into account both the specific activity of the probe and the amount of protein necessary for screening a large number of filters. Here we describe in detail a procedure for the production and purification of [35S]-recombinant calmodulin and the use of the radiolabelled protein as a probe to screen plant cDNA expression libraries. The [35S]-labeled calmodulin probe easily detects the λICM-1 phage encoding a partial mouse calmodulin-dependent protein kinase II that was previously isolated using a [125I]-calmodulin probe (Sikela and Hahn, 1987). Subsequently, a tobacco root cDNA expression library was screened and a positive clone encoding a calcium-dependent calmodulin-binding protein was isolated.  相似文献   
54.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   
    55.
    A recombinant 19-kDa human fibroblast collagenase catalytic fragment modeled on a naturally occurring proteolytic product was purified from E. coli inclusion bodies. Following renaturation in the presence of zinc and calcium, the fragment demonstrated catalytic activity with the same primary sequence specificity against small synthetic substrates as the full-length collagenase. Unlike the parent enzyme, it rapidly cleaved casein and gelatin but not native type I collagen. Intrinsic fluorescence of the three tryptophan residues was used to monitor the conformational state of the enzyme, which underwent a 24-nm red shift in emission upon denaturation accompanied by quenching of the fluorescence and loss of catalytic activity. Low concentrations of denaturant unfolded the fragment while the full-length enzyme displayed a shallow extended denaturation curve. Calcium remarkably stabilized the 19-kDa fragment, zinc less so, while together they were synergistically stabilizing. Among divalent cations, calcium was the most effective stabilizer, EC50 approximately 60 microM, and similar amounts were required for substrate hydrolysis. Catalytic activity was more sensitive to denaturation than was tryptophan fluorescence. Least sensitive was the polypeptide backbone secondary structure assessed by CD. These observations suggest that the folding of the 19-kDa collagenase fragment is a multistep process stabilized by calcium.  相似文献   
    56.
    57.
    Dicotyledonous plants subjected to Fe-deficiency stress can decrease pH in the rhizosphere by proton excretion and reduce ferric iron by an activated reduction system in the plasma membranes of the root or by reductants released from the roots. The efficiency by which these plants take up Fe may strongly depend on their cation-anion balance. This study presents results of two experiments conducted to evaluate the effect of K, growth stage and cultivar on ionic balance and Fe acquisition of peanut (Arachis hypogaea L.) plants.Potassium applications to the high calcareous soil (30.3% CaCO3) favoured proton release, but did not ameliorate plant Fe acquisition. At the earliest stages of plant growth, anion uptake exceeded cation uptake due to intensive N uptake. With time, a shift in the ionic balance was observed as a result of predominant cation uptake. It appears that the relationship between H/OH-ion release and Fe nutrition of peanut plants is actually a complex phenomenon under soil conditions and depends on some soil parameters, such as CaCO3 content. Even by enhanced H-ion release Fe nutrition of plants can be impaired if soil CaCO3 is too high.  相似文献   
    58.
    The physiological basis of plant reaction to and tolerance of aluminium (Al) is poorly understood. We review the results of investigations into Al toxicity and root physiology to develop a theoretical basis for explaining the reaction of the root to Al, including suggested roles for Ca2+, mucilaginous cap secretions and endogenous growth regulators in mediating a transmitted response between Al-damaged cap cells and the interacting cell populations of the cap and root. This information is used to identify possible mechanisms of Al tolerance, notably involving signal transduction, Al uptake pathways and root morphogenesis; and to briefly discuss how procedures selecting for Al tolerance may be improved by incorporating the concept of stimulus-response coupling. Similarities in the responses of roots to Al and other signals (e.g. gravity, light, mechanical impedance) are used to develop the hypothesis that roots respond to environmental signals by way of a common regulatory system. New research prospects for extending our perception of Al tolerance mechanisms are identified.  相似文献   
    59.
    A field experiment was conducted on an Ultisol in Malaysia to assess changes in soil solution composition and their effects on maize and groundnut yields, resulting from limestone and gypsum application. The results showed that soil solution Ca in the lime treatment remained mainly in the zone of incorporation, but in the gypsum treatment some Ca moved into 15–30 cm zone. Al3+ and AlSO4 + were dominant Al species in the soil solution of nil treatment. Liming decreased Al3+ and AlSO4 +, but increased hydroxy-Al monomer activities. However, gypsum application resulted in an increase of AlSO4 + activity and in a decrease of Al3+ activity. Relative maize and groundnut yields were negatively correlated with Al3+, Al(OH)2+ and Alsum activities. Likewise, relative yields were negatively correlated with Al concentration and the Al concentration ratio and positively correlated with soil solution Mg concentration and Ca/Al ratio.  相似文献   
    60.
    A. Limami  T. Lamaze 《Plant and Soil》1991,138(1):115-121
    The lower part (4 cm) of the witloof chicory tap-root (15 cm) was immersed in a complete nutrient solution for 21 days, in the darkness at 18°C and at high RH. This process of forcing which leads to the emergence of an etiolated bud (chicon) was associated with a decrease in root dry weight. Although the amount of calcium in the root and the root cationic exchange capacity remained constant during forcing, the net uptake of calcium, negligible at the onset of forcing, progressively increased to a rate after ten days of 45 mol day–1. Absorption of 45Ca remained at a constant high rate, while the initially low upward migration of 45Ca within the root and the chicon accelerated markedly. This upward migration was associated with a progressive decline in the release of newly absorbed 45Ca. The data support the hypothesis that calcium acquisition by witloof chicory root is predominantly determined by calcium efflux. As the forcing progressed, the influx remained almost constant while a large decrease in the efflux led to a net uptake of calcium. Upward translocation was probably linked to the formation of new negative exchange sites within the growing chicon. The hypothesis that calcium movement occurred along a preferential pathway (xylem vessels) or involved a mass movement through the root is discussed.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号