首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   400篇
  免费   32篇
  国内免费   8篇
  440篇
  2023年   14篇
  2022年   21篇
  2021年   20篇
  2020年   16篇
  2019年   24篇
  2018年   19篇
  2017年   10篇
  2016年   17篇
  2015年   11篇
  2014年   29篇
  2013年   25篇
  2012年   15篇
  2011年   12篇
  2010年   9篇
  2009年   5篇
  2008年   17篇
  2007年   12篇
  2006年   9篇
  2005年   8篇
  2004年   3篇
  2003年   9篇
  2002年   9篇
  2001年   3篇
  2000年   6篇
  1999年   7篇
  1998年   6篇
  1997年   12篇
  1996年   11篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   1篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   2篇
  1981年   4篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
431.
Jumping spiders are known for their extraordinary cognitive abilities. The underlying nervous system structures, however, are largely unknown. Here, we explore and describe the anatomy of the brain in the jumping spider Marpissa muscosa (Clerck, 1757) by means of paraffin histology, X-ray microCT analysis and immunohistochemistry as well as three-dimensional reconstruction. In the prosoma, the CNS is a clearly demarcated mass that surrounds the esophagus. The anteriormost neuromere, the protocerebrum, comprises nine bilaterally paired neuropils, including the mushroom bodies and one unpaired midline neuropil, the arcuate body. Further ventrally, the synganglion comprises the cheliceral (deutocerebrum) and pedipalpal neuropils (tritocerebrum). Synapsin-immunoreactivity in all neuropils is generally strong, while allatostatin-immunoreactivity is mostly present in association with the arcuate body and the stomodeal bridge. The most prominent neuropils in the spider brain, the mushroom bodies and the arcuate body, were suggested to be higher integrating centers of the arthropod brain. The mushroom body in M. muscosa is connected to first and second order visual neuropils of the lateral eyes, and the arcuate body to the second order neuropils of the anterior median eyes (primary eyes) through a visual tract. The connection of both, visual neuropils and eyes and arcuate body, as well as their large size corroborates the hypothesis that these neuropils play an important role in cognition and locomotion control of jumping spiders. In addition, we show that the architecture of the brain of M. muscosa and some previously investigated salticids differs significantly from that of the wandering spider Cupiennius salei, especially with regard to structure and arrangement of visual neuropils and mushroom body. Thus, we need to explore the anatomical conformities and specificities of the brains of different spider taxa in order to understand evolutionary transformations of the arthropod brain.  相似文献   
432.
《Current biology : CB》2022,32(13):2834-2847.e5
  1. Download : Download high-res image (334KB)
  2. Download : Download full-size image
  相似文献   
433.
434.
《Neuron》2021,109(16):2590-2603.e13
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   
435.
436.
Most of computer-assisted planning systems need to determine the anatomical axis based on the anterior pelvic plane (APP). We analysed that our new system is more reproducible for determination of APP than previous methods. A pelvic model bone and two subjects suffering from hip osteoarthritis were evaluated. Multidetector-row computed tomography (MDCT) images were scanned with various rotations by MDCT scanner. The pelvic rotation was calibrated using silhouette images. APP was determined by an optimisation technique. The values of variation of APP caused by pelvic rotation were analysed with statistical analysis. APP determination with calibration and optimisation was most reproducible.The values of variance of APP were within 0.05° in model bone and 0.2° even in patient pelvis. Furthermore, the values of variance of APP with calibration/optimisation were significantly lower in comparison without calibration/optimisation. Both calibration and optimisation are actually required for determination of APP. This system could contribute to the evaluation of hip joint kinematics and computer-assisted surgery.  相似文献   
437.
Conceptual knowledge reflects our multi-modal ‘semantic database’. As such, it brings meaning to all verbal and non-verbal stimuli, is the foundation for verbal and non-verbal expression and provides the basis for computing appropriate semantic generalizations. Multiple disciplines (e.g. philosophy, cognitive science, cognitive neuroscience and behavioural neurology) have striven to answer the questions of how concepts are formed, how they are represented in the brain and how they break down differentially in various neurological patient groups. A long-standing and prominent hypothesis is that concepts are distilled from our multi-modal verbal and non-verbal experience such that sensation in one modality (e.g. the smell of an apple) not only activates the intramodality long-term knowledge, but also reactivates the relevant intermodality information about that item (i.e. all the things you know about and can do with an apple). This multi-modal view of conceptualization fits with contemporary functional neuroimaging studies that observe systematic variation of activation across different modality-specific association regions dependent on the conceptual category or type of information. A second vein of interdisciplinary work argues, however, that even a smorgasbord of multi-modal features is insufficient to build coherent, generalizable concepts. Instead, an additional process or intermediate representation is required. Recent multidisciplinary work, which combines neuropsychology, neuroscience and computational models, offers evidence that conceptualization follows from a combination of modality-specific sources of information plus a transmodal ‘hub’ representational system that is supported primarily by regions within the anterior temporal lobe, bilaterally.  相似文献   
438.
439.
The intramembrane protease γ-secretase activates important signaling molecules, such as Notch receptors. It is still unclear, however, how different elements within the primary structure of substrate transmembrane domains (TMDs) contribute to their cleavability. Using a newly developed yeast-based cleavage assay, we identified three crucial regions within the TMDs of the paralogs Notch1 and Notch3 by mutational and gain-of-function approaches. The AAAA or AGAV motifs within the N-terminal half of the TMDs were found to confer strong conformational flexibility to these TMD helices, as determined by mutagenesis coupled to deuterium/hydrogen exchange. Crucial amino acids within the C-terminal half may support substrate docking into the catalytic cleft of presenilin, the enzymatic subunit of γ-secretase. Further, residues close to the C-termini of the TMDs may stabilize a tripartite β-sheet in the substrate/enzyme complex. NMR structures reveal different extents of helix bending as well as an ability to adopt widely differing conformational substates, depending on the sequence of the N-terminal half. The difference in cleavability between Notch1 and Notch3 TMDs is jointly determined by the conformational repertoires of the TMD helices and the sequences of the C-terminal half, as suggested by mutagenesis and building molecular models. In sum, cleavability of a γ-secretase substrate is enabled by different functions of cooperating TMD regions, which deepens our mechanistic understanding of substrate/non-substrate discrimination in intramembrane proteolysis.  相似文献   
440.
Glutamate is the primary excitatory transmitter of sensory transmission and perception in the central nervous system. Painful or noxious stimuli from the periphery ‘teach’ humans and animals to avoid potentially dangerous objects or environments, whereas tissue injury itself causes unnecessary chronic pain that can even last for long periods of time. Conventional pain medicines often fail to control chronic pain. Recent neurobiological studies suggest that synaptic plasticity taking place in sensory pathways, from spinal dorsal horn to cortical areas, contributes to chronic pain. Injuries trigger long-term potentiation of synaptic transmission in the spinal cord dorsal horn and anterior cingulate cortex, and such persistent potentiation does not require continuous neuronal activity from the periphery. At the synaptic level, potentiation of excitatory transmission caused by injuries may be mediated by the enhancement of glutamate release from presynaptic terminals and potentiated postsynaptic responses of AMPA receptors. Preventing, ‘erasing’ or reducing such potentiation may serve as a new mechanism to inhibit chronic pain in patients in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号