首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1020篇
  免费   13篇
  国内免费   14篇
  1047篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   11篇
  2020年   17篇
  2019年   16篇
  2018年   13篇
  2017年   10篇
  2016年   15篇
  2015年   28篇
  2014年   71篇
  2013年   80篇
  2012年   71篇
  2011年   118篇
  2010年   107篇
  2009年   26篇
  2008年   43篇
  2007年   36篇
  2006年   57篇
  2005年   34篇
  2004年   40篇
  2003年   35篇
  2002年   20篇
  2001年   10篇
  2000年   15篇
  1999年   16篇
  1998年   14篇
  1997年   18篇
  1996年   16篇
  1995年   14篇
  1994年   7篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   9篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有1047条查询结果,搜索用时 15 毫秒
81.
A series of substrate analogue inhibitors of the serine protease HAT, containing a 4-amidinobenzylamide moiety as the P1 residue, was prepared. The most potent compounds possess a basic amino acid in the d-configuration as P3 residue. Whereas inhibitor 4 (Ki 13 nM) containing proline as the P2 residue completely lacks selectivity, incorporation of norvaline leads to a potent inhibitor (15, Ki 15 nM) with improved selectivity for HAT in comparison to the coagulation proteases thrombin and factor Xa or the fibrinolytic plasmin. Selected inhibitors were able to suppress influenza virus replication in a HAT-expressing MDCK cell model.  相似文献   
82.
The bifunctional Escherichia coli glutathionylspermidine synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Its amidase domain (GspA), which catalyzes the hydrolysis of Gsp into glutathione and spermidine, plays an important role in redox sensing and protein S-thiolation. To gain insight of the regulation and catalytic mechanism of and further understand the recycling of the Gsp dimer and Gsp-S-protein adducts, we solved two crystal structures of GspA and GspSA both with the C59A mutation and bound with the substrate, Gsp. In both structures, Cys59, His131, and Glu147 form the catalytic triad, which is similar to other cysteine proteases. Comparison of the GspA_Gsp complex and apo GspSA structures indicates that on binding with Gsp, the side chains of Asn149 and Gln58 of the amidase domain are induced to move closer to the carbonyl oxygen of the cleaved amide bond of Gsp, thereby participating in catalysis. In addition, the helix-loop region of GspA, corresponding to the sequence (30)YSSLDPQEYEDDA(42), involves in regulating the substrate binding. Our previous study indicated that the thiol of Cys59 of GspA is only oxidized to sulfenic acid by H(2)O(2). When comparing the active site of GspA with those of other cysteine proteases, we found that limited space and hydrophobicity of the environment around Cys59 play an important role to inhibit its further oxidation. The structural results presented here not only elucidate the catalytic mechanism and regulation of GspA but also help us to design small molecules to inhibit or probe for the activity of GspA.  相似文献   
83.
Herein is described the synthesis of a novel class of peptidyl FVIIa inhibitors having a C-terminal benzyl ketone group. This class is designed to be potentially suitable as stabilization agents of liquid formulations of rFVIIa, which is a serine protease used for the treatment of hemophilia A and B inhibitor patients. A library of compounds was synthesized with different tripeptide sequences, N-terminals and d-amino acids in the P3 position. Cbz-d-Phe-Phe-Arg-bk (33) was found to be the best candidate with a potency of Ki = 8 μM and no substantial inhibition of related blood coagulation factors (thrombin and FXa). Computational studies revealed that 33 has a very stable binding conformation due to intramolecular hydrogen bonds, which cannot be formed with l-Phe in the P3 position. Nonpolar amino acids were found to be superior, probably due to a minimization of the cost of desolvation upon binding to FVIIa.  相似文献   
84.
A thermostable extracellular serine protease from Aspergillus fumigatus was purified 8.8-fold using a 4-step protocol. The enzyme was produced using a 36 h solid-state culture, had a molecular weight of 88 kDa and exhibited maximal enzyme activity at pH 7 and 60 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50, 60 and 70 °C was 65, 34 and 14 min, respectively. The denaturation and activation energies were 69 and 62 kJ mol−1, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by A. fumigatus.  相似文献   
85.
Summary. Hepatitis C, Dengue and West Nile virus are some of the most important flaviviruses, that share one important serine protease enzyme. Serine proteases are the most studied class of proteolytic enzyme and, in these cases, a primary target for drug discovery. In this paper, we describe the synthesis and preliminary molecular modeling studies of a novel class of N-t-Boc amino acid esters derived of isomannide as potential serine proteases inhibitors.  相似文献   
86.
CNBr cleavage of unreduced proenzyme Clr yielded fragment CP2b, isolated by gel filtration and highpressure gel permeation chromatography. This fragment (˜ Mτ 55000) comprised at least 4 disulphidelinked peptides, which were separated by gel filtration after reduction and alkylation. Peptide CP2bRA4, overlapping the A- and B-chain regions in proenzyme Clr was digested by V8 staphylococcal protease, and the digest separated by reversed-phase HPLC. N-terminal sequence analysis of peptide CP2bRA4SP9 established that Clr activation involves the cleavage of a single Arg-Ile bond, located in the sequence: Gln-Arg-Gln-Arg-Ile-Ile-Gly-Gly  相似文献   
87.
We have previously cloned a cDNA, designated SAT1, corresponding to a gene coding for a serine acetyltransferase (SAT) from onion (Allium cepa L.). The SAT1 locus was mapped to chromosome 7 of onion using a single-stranded conformation polymorphism (SSCP) in the 3' UTR of the gene. Northern analysis has demonstrated that expression of the SAT1 gene is induced in leaf tissue in response to low S-supply. Phylogenetic analysis has placed SAT1 in a strongly supported group (100% bootstrap) that comprises sequences that have been characterised biochemically, including Allium tuberosum, Spinacea oleracea, Glycine max, Citrullus vulgaris, and SAT5 (AT5g56760) of Arabidopsis thaliana. This group can be divided further with the SAT1 of A. cepa sequence grouping strongly with the A. tuberosum sequence. Translation of SAT1 from onion generates a protein of 289 amino acids with a calculated molecular mass of 30,573 Da and pI of 6.52. The conserved G277 and H282 residues that have been identified as critical for L-cysteine inhibition are observed at G272 and H277. SAT1 has been cloned into the pGEX plasmid, expressed in E. coli and SAT activity of the recombinant enzyme has been measured as acetyl-CoA hydrolysis detected at 232 nm. A Km of 0.72 mM was determined for l-serine as substrate, a Km of 92 microM was calculated with acetyl-CoA as substrate, and an inhibition curve for L-cysteine generated an IC50 value of 3.1 microM. Antibodies raised against the recombinant SAT1 protein recognised a protein of ca. 33 kDa in whole leaf onion extracts. These properties of the SAT1 enzyme from onion are compared with other SAT enzymes characterised from closely related species.  相似文献   
88.
89.
The structure of an acidic polysaccharide from Pseudoalteromonas aliena type strain KMM 3562(T) has been elucidated. The polysaccharide was studied by component analysis, (1)H and (13)C NMR spectroscopy, including 2D NMR experiments. A (1)H, (13)C band-selective constant-time heteronuclear multiple-bond connectivity experiment was used to determine amide linkages, between serine and uronic acid (UA) residues, via (3)J(H,C) correlations between Ser-alphaH and UA-C-6. It was found that the polysaccharide consists of pentasaccharide repeating units with the following structure: [carbohydrate structure]; see text.  相似文献   
90.
Selective factor VIIa-tissue factor complex (FVIIa/TF) inhibition is seen as a promising target for developing new anticoagulant drugs. A novel peptide mimetic factor VIIa inhibitor, ethylsulfonamide-d-biphenylalanine-Gln-p-aminobenzamidine, shows 100-fold selectivity against thrombin in spite of its large P3 moiety, unlike previously reported FVIIa/TF selective inhibitors. X-ray crystal structure analysis reveals that the large P3 moiety, d-biphenylalanine, and the small P4 moiety, ethylsulfonamide, make novel interactions with the 170-loop and Lys192 of FVIIa/TF, respectively, accompanying ligand-induced conformational changes of the 170-loop, Gln217, and Lys192. Structural comparisons of FVIIa with thrombin and amino acid sequence comparisons among coagulation serine proteases suggest that these interactions play an important role in achieving selective inhibition for FVIIa/TF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号