首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   25篇
  国内免费   10篇
  398篇
  2023年   6篇
  2022年   5篇
  2021年   17篇
  2020年   14篇
  2019年   13篇
  2018年   8篇
  2017年   12篇
  2016年   15篇
  2015年   11篇
  2014年   20篇
  2013年   25篇
  2012年   18篇
  2011年   16篇
  2010年   15篇
  2009年   28篇
  2008年   26篇
  2007年   16篇
  2006年   17篇
  2005年   12篇
  2004年   9篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
1.
Pyrithiamine-induced thiamine-deficiency encephalopathy in the rat shows many neuropathological and biochemical similarities to Wernicke's encephalopathy in humans. Treatment of rats with pyrithiamine resulted in moderate reductions of glutamate in thalamus and pons and in generalized severe reductions of aspartate in pons (by 89%, p less than 0.01), thalamus (by 83%, p less than 0.01), cerebellum (by 53%, p less than 0.01), and cerebral cortex (by 33%, p less than 0.05). Alanine concentrations were concomitantly increased. Activities of the thiamine-dependent enzyme alpha-ketoglutarate dehydrogenase (alpha KGDH) were decreased in parallel with the aspartate decreases; pyruvate dehydrogenase complex activities were unchanged in all brain regions. Following thiamine administration to symptomatic pyrithiamine-treated rats, neurological symptoms were reversed and concentrations of glutamate, aspartate, and alanine, as well as alpha KGDH activities, were restored to normal in cerebral cortex and pons. Aspartate levels and alpha KGDH activities remained below normal values, however, in thalamus. Thus, pyrithiamine treatment leads to reductions of cerebral alpha KGDH and (1) decreased glucose (pyruvate) oxidation resulting in accumulation of alanine and (2) decreased brain content of glutamate and aspartate. Such changes may be of key significance in the pathophysiology of the reversible and irreversible signs of Wernicke's encephalopathy in humans.  相似文献   
2.
Regional Reductions of Transketolase in Thiamine-Deficient Rat Brain   总被引:1,自引:0,他引:1  
Abstract: Thiamine deficiency impairs oxidative metabolism and causes metabolic encephalopathy. An early reduction in transketolase (TK) activity may be an important pathogenic event. To assess the role of TK, we have delineated the regional/cellular distribution of TK protein and mRNA in adult rat brain in pyrithiamine-induced thiamine deficiency. TK activity declined in both vulnerable and spared regions. Immunoblots showed a parallel reduction of TK protein. With a few exceptions, immunocytochemistry indicated an overall decline of TK immunoreactivity and the decrease was not specific to vulnerable areas. In contrast to the pronounced, general decline of TK protein, in situ hybridization revealed a regional decrease of 0–25% of TK mRNA in thiamine deficiency. Northern blots indicated a similar level of TK mRNA in whole brain in thiamine deficiency. These results show that the decline of TK activity results from a proportional decrease of TK protein, and the deficiency may be due to an instability of TK protein or an inhibition of TK mRNA translation. The lack of correlation of the distribution, and the absence of specific alteration, of TK in affected regions suggest that the reduced TK may not be linked directly to selective vulnerability in thiamine deficiency.  相似文献   
3.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   
4.
Neuronal vacuolation (spongiosis), neuronal death, and pronounced glial reactions are the hallmarks of transmissible spongiform encephalopathies (TSEs), or prion diseases. A wealth of physical, biochemical, and immunological evidence indicates that the TSE agent, termed prion, does not contain agent-specific nucleic acid encoding its own constituents, as is the case for all other infectious pathogens. Also, no adaptive immune responses are elicited upon infection. A defining feature of TSEs is the deposition, mainly in the brain and lymphoreticular tissues, of an aggregated and structurally abnormal protein, designated PrP(Sc) or PrP-res, which represents a conformational isomer of the ubiquitous surface protein PrP(C). Biochemical and genetic evidence link PrP and its gene to the disease. Although TSEs are by definition transmissible, a growing number of Prnp-associated non-infectious neurodegenerative proteinopathies are now being recognized.  相似文献   
5.
Sepsis‐associated encephalopathy (SAE) has typically been associated with a poor prognosis. Although sestrin 2 (SESN2) plays a crucial role in metabolic regulation and the stress response, its expression and functional roles in SAE are still unclear. In the present study, SAE was established in mice through caecal ligation and puncture (CLP). The adeno‐associated virus 2 (AAV2)‐mediated SESN2 expression (ie overexpression and knockdown) system was injected into the hippocampi of mice with SAE, and subsequently followed by electron microscopic analysis, the Morris water maze task and pathological examination. Our results demonstrated an increase of SESN2 in the hippocampal neurons of mice with SAE, 2‐16 hours following CLP. AAV2‐mediated ectopic expression of SESN2 attenuated brain damage and loss of learning and memory functions in mice with SAE, and these effects were associated with lower pro‐inflammatory cytokines in the hippocampus. Mechanistically, SESN2 promoted unc‐51‐like kinase 1 (ULK1)‐dependent autophagy in hippocampal neurons through the activation of the AMPK/mTOR signalling pathway. Finally, AMPK inhibition by SBI‐0206965 blocked SESN2‐mediated attenuation of SAE in mice. In conclusion, our findings demonstrated that SESN2 might be a novel pharmacological intervention strategy for SAE treatment through promotion of ULK1‐dependent autophagy in hippocampal neurons.  相似文献   
6.
目的:探究重症急性胰腺炎并发胰性脑病(PE)的临床特点及相关影响因素分析。方法:本研究于2008年3月~2015年3月期间,选择我院收治的重症急性胰腺炎患者93例为研究对象,根据患者是否并发PE临床症状将其分为PE组和非PE组。收集所有患者基本资料、实验室检查指标及病原学培养检查资料,采用logistics回归对PE发病的影响因素进行分析。结果:93例重症急性胰腺炎中23例被诊断为PE,发病率为24.73%,临床主要表现为兴奋性、烦躁不安、谵妄等症状;PE组患者APACHEⅡ评分、MODS发生率、肌酐、甘油三脂水平及真菌感染率均高于非PE组,差异有统计学意义(P0.05);多因素logistics回归显示,高APACHEⅡ评分和高甘油三脂是PE发生的危险因素(OR=3.221,2.973;均P0.05)。结论:重症急性胰腺炎并发PE的发病率较高,临床有较高的APACHEⅡ评分、MODS发生率、肌酐、甘油三脂水平及真菌感染率,其中高APACHEⅡ评分和高甘油三脂是PE发生的危险因素。  相似文献   
7.
Neonatal hypoxic-ischemic encephalopathy is one of the leading causes of death in infants. Increasing evidence indicates that oxidative stress and apoptosis are major contributors to hypoxic-ischemic injury and can be used as particularly promising therapeutic targets. Platycodin D (PLD) is a triterpenoid saponin that exhibits antioxidant properties. The aim of this study was to evaluate the effects of PLD on hypoxic-ischemic injury in primary cortical neurons. We found that oxygen-glucose deprivation/reperfusion (OGD/R) induced inhibition of cell viability and cytotoxicity, which were attenuated by PLD treatment. PLD treatment inhibited oxidative stress induced by OGD/R, which was evidenced by the reduced level of reactive oxygen species and increased activities of catalase, superoxide dismutase, and glutathione peroxidase. Histone-DNA enzyme-linked immunosorbent assay revealed that apoptosis was significantly decreased after PLD treatment in OGD/R-treated cortical neurons. The increased bax expression and decreased bcl-2 expression induced by OGD/R were reversed by PLD treatment. Furthermore, PLD treatment caused the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway in OGD/R-stimulated cortical neurons. Suppression of this pathway blocked the protective effects of PLD on OGD/R-induced cell injury. These findings suggested that PLD executes its protective effects on OGD/R-induced cell injury via regulating the PI3K/Akt/mTOR pathway in cortical neurons.  相似文献   
8.
Prion diseases are a group of fatal neurodegenerative diseases affecting humans and animals. The only identified component of the infectious prion is PrPSc, an aberrantly folded isoform of PrPC. Glycosaminoglycans, which constitute the main receptor for prions on cells, play a complex role in the pathogenesis of prion diseases. For example, while agents inducing aberrant lysosomal accumulation of GAGs such as Tilorone and Quinacrine significantly reduced PrPSc content in scrapie-infected cells, administration of Quinacrine to prion-infected subjects did not improve their clinical status. In this study, we investigated the association of PrPSc with cells cultured with Tilorone. We found that while the initial incorporation of PrPSc was similar in the treated and untreated cells, clearance of PrPSc from the Tilorone-treated cells was significantly impaired. Interestingly, prolonged administration of Tilorone to mice prior to prion infection resulted in a significant delay in disease onset, concomitantly with in vivo accumulation of lysosomal GAGs. We hypothesize that GAGs may complex with newly incorporated PrPSc in lysosomes and further stabilize the prion protein conformation. Over-stabilized PrPSc molecules have been shown to comprise reduced converting activity.  相似文献   
9.
目的:探讨乳果糖和枯草杆菌屎球菌二联活菌治疗肝硬化所致轻微性肝性脑病(MHE)的疗效。方法:将患有MHE的患者84例随机分为四组,对照组(A组,仅接受肝硬化综合治疗),乳果糖组(B组,在A组基础上加用乳果糖口服液),枯草杆菌屎球菌二联活菌组(C组,在A组基础上加用枯草杆菌屎球菌二联活菌胶囊),联合组(D组,在A组基础上联合应用乳果糖和枯草杆菌屎球菌二联活菌胶囊),每组均治疗4周。分别于治疗后第一周,第二周,第四周观察患者的数字连接实验(NCT)、数字符号实验(DST)结果,血氨变化及不良反应的发生情况。结果:B、C、D组NCT时间,DST分数及血氨均较A组改善明显,其中以D组最显著(P0.05),且随着治疗时间延长,B、C、D组以上各指标逐渐改善,其中D组以治疗后2周效果最明显(P0.05)。四组均无明显不良反应,其中D组不良反应率最低。结论:单用乳果糖与单用枯草杆菌二联活菌均可改善MHE患者的病情,但联合用药效果明显优于单药治疗,且随用药时间延长,疗效明显,安全性高,值得在临床推广。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号