首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45815篇
  免费   2187篇
  国内免费   1881篇
  49883篇
  2023年   431篇
  2022年   691篇
  2021年   738篇
  2020年   926篇
  2019年   1127篇
  2018年   1144篇
  2017年   996篇
  2016年   1030篇
  2015年   959篇
  2014年   2004篇
  2013年   3643篇
  2012年   1476篇
  2011年   2112篇
  2010年   1544篇
  2009年   2049篇
  2008年   2235篇
  2007年   2257篇
  2006年   1926篇
  2005年   1834篇
  2004年   1458篇
  2003年   1424篇
  2002年   1202篇
  2001年   978篇
  2000年   861篇
  1999年   810篇
  1998年   840篇
  1997年   798篇
  1996年   757篇
  1995年   715篇
  1994年   723篇
  1993年   657篇
  1992年   629篇
  1991年   556篇
  1990年   520篇
  1989年   492篇
  1988年   447篇
  1987年   445篇
  1986年   309篇
  1985年   667篇
  1984年   959篇
  1983年   658篇
  1982年   741篇
  1981年   578篇
  1980年   522篇
  1979年   465篇
  1978年   286篇
  1977年   281篇
  1976年   233篇
  1975年   183篇
  1974年   192篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
181.
Ralstonia eutropha grows on and produces polyhydroxyalkanoates (PHAs) from fermentation acids. Acetic acid, one major organic acid from acidogenesis of organic wastes, has an inhibitory effect on the bacterium at slightly alkaline pH (6 g HAc/L at pH 8). The tolerance of R. eutropha to acetate, however, was increased significantly up to 15 g/L at the slightly alkaline pH level with high cell mass concentration. A metabolic cell model with five fluxes is proposed to depict the detoxification mechanism including mass transfer and acetyl-CoA formation of acetic acid and the formation of three final metabolic products, polyhydroxybutyrate (PHB), active biomass, and CO(2). The fluxes were measured under different conditions such as cell mass concentration, acetic acid concentration, and medium composition. The experimental results indicate that the acetate detoxification by high cell mass concentration is attributed to the increased fluxes at high extracellular acetate concentrations. The fluxes could be doubled to reduce and hence detoxify the accumulated intracellular acetate anions.  相似文献   
182.
With the exception of the polysialic acid capsule (K1 antigen), little is known about other virulence factors needed for systemic infection by Escherichia coli K1, the leading cause of Gram-negative neonatal meningitis in humans. In this work, the functional genomics method of signature-tagged mutagenesis (STM) was adapted to E. coli K1 and the infant-rat model to identify non-capsule virulence genes. Validation of the method was demonstrated by the failure to recover a reconstructed acapsular mutant from bacterial pools used to systemically infect 5-day-old rats. Three new genes required for systemic disease were identified from a total of 192 mutants screened by STM (1.56% hit rate). Gut colonization, Southern blot hybridization, mixed-challenge infection, and DNA sequence analyses showed that the attenuating defects in the mutants were associated with transposon insertions in rfaL (O antigen ligase), dsbA (thiol:disulfide oxidoreductase), and a new gene, puvA (previously unidentified virulence gene A), with no known homologues. The results indicate the ability of STM to identify novel systemic virulence factors in E. coli K1.  相似文献   
183.
Plant regeneration through somatic embryogenesis of Areca catechu L. was established using leaf, root and stem segments as explants. Embryogenic callus was induced and maintained on medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) or 3,6-dichloro-2-methoxybenzoic acid (dicamba) at concentrations 2, 4, 6 and 8 mg dm−3 in darkness. Somatic embryos were found on primary callus in the presence of 2 and 4 mg dm−3 dicamba and during subculture on 2 – 8 mg dm−3 2,4-D or 2 – 4 mg dm−3 dicamba-containing media. Plantlet conversion from embryos was successfully achieved on growth regulator-free medium. The plants grew well when transplanted to containers in shaded greenhouse.  相似文献   
184.
Bacteria associated with arbuscular mycorrhizal (AM) fungal spores may play functional roles in interactions between AM fungi, plant hosts and defence against plant pathogens. To study AM fungal spore-associated bacteria (AMB) with regard to diversity, source effects (AM fungal species, plant host) and antagonistic properties, we isolated AMB from surface-decontaminated spores of Glomus intraradices and Glomus mosseae extracted from field rhizospheres of Festuca ovina and Leucanthemum vulgare. Analysis of 385 AMB was carried out by fatty acid methyl ester (FAME) profile analysis, and some also identified using 16S rRNA gene sequence analysis. The AMB were tested for capacity to inhibit growth in vitro of Rhizoctonia solani and production of fluorescent siderophores. Half of the AMB isolates could be identified to species (similarity index 0.6) within 16 genera and 36 species. AMB were most abundant in the genera Arthrobacter and Pseudomonas and in a cluster of unidentified isolates related to Stenotrophomonas. The AMB composition was affected by AM fungal species and to some extent by plant species. The occurrence of antagonistic isolates depended on AM fungal species, but not plant host, and originated from G. intraradices spores. AM fungal spores appear to host certain sets of AMB, of which some can contribute to resistance by AM fungi against plant pathogens.  相似文献   
185.
Carbonic anhydrases (EC 4.2.1.1) catalyse the reversible hydration of CO2 into bicarbonate and protons. As a hypoxia-sensitive and tumour-associated isoform, isoform CA IX, is significantly overexpressed in various malignancies, being a validated target for new anticancer/antimetastatic drugs. A multitude of studies has shown that CA IX inhibition decreases cancer cell proliferation and metastasis through pHe/pHi modulation and enhancement of ferroptosis among others. Numerous studies demonstrated increased efficacy of cytotoxic drugs combined with CA inhibitors (CAIs) in various cancer types. We tested the inhibitory effect of boric acid (BA), an inorganic Lewis acid, on CA IX as well as other isoforms (CA I, II, and XII). BA acted as a millimolar in vitro CAI, decreased proliferation of two cancer cell lines, although not strong correlations between the in vitro inhibition and in vivo effects were observed. The mechanism of antiproliferative action of BA should be investigated in more detail.  相似文献   
186.
Ceriporic acids are a class of alk(en)ylitaconic acids produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. The unique function of alkylitaconic acid is the redox silencing of the Fenton reaction system by inhibiting reduction of Fe3+. Ceriporic acids have an asymmetric centre at carbon-3, but absolute configuration has not been determined. We have isolated a series of ceriporic acids from the cultures of C. subvermispora, and measured their NMR spectra using a chiral shift reagent. In comparison with NMR spectra of (R)-(−)- and (S)-(+)-methylsuccinic acid and those of natural and chemically synthesized racemic mixtures of ceriporic acids, we have determined the absolute configuration of ceriporic acids as (R)-3-tetradecylitaconic acid (ceriporic acid A), (R)-3-hexadecylitaconic acid (ceriporic acid B) and (R,Z)-2-(hexadec-7-enyl)-3-itaconic acid (ceriporic acid C). We herein discuss their stereoselective biosynthetic pathway and the structural diversity of fungal secondary metabolites.  相似文献   
187.
The secondary lichen products of 31 specimens of theRhizocarpon superficiale group are examined by high performance liquid chromatography (HPLC). At 260 nm 13 different compounds have been detected. 6 of them are well-known lichen acids which occur in nearly all the species; but proportions are different and constant for each species. An analytical key is added.
Beitrag I einer Publikationsreihe.  相似文献   
188.
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+-dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.  相似文献   
189.
Investigations of the unicellular marine cyanobacterium Synechococcus PCC 7002 revealed its ability to metabolize phenol under non-photosynthetic conditions up to 100 mg L–1. Under continuous light, photoautotrophic growth was reduced only slightly in the presence of this phenol concentration, but no transformation was observed. However neither under photoautotrophic nor heterotrophic conditions were the cells able to use phenol for growth. During the degradation of phenol in the dark cis,cis-muconic acid was produced as the major product, which was identified by gas chromatography/mass spectrometry. This result was confirmed by an identical absorption spectrum and an identical retention time in high performance liquid chromatographic analysis with authentic muconic acid as standard. This provides the first record for an ortho-fission of a phenolic substance by cyanobacteria. Further investigations of the breakdown mechanism of phenol have shown that the transformation is an extracellular process inhibited by heat, proteases and metal ions and is probably catalyzed by a protein.  相似文献   
190.
Low and high serum retinol levels are associated with increased fracture risk and poor bone health. We recently showed retinoic acid receptors (RARs) are negative regulators of osteoclastogenesis. Here we show RARs are also negative regulators of osteoblast and adipocyte differentiation. The pan-RAR agonist, all-trans retinoic acid (ATRA), directly inhibited differentiation and mineralisation of early osteoprogenitors and impaired the differentiation of more mature osteoblast populations. In contrast, the pan-RAR antagonist, IRX4310, accelerated differentiation of early osteoprogenitors. These effects predominantly occurred via RARγ and were further enhanced by an RARα agonist or antagonist, respectively. RAR agonists similarly impaired adipogenesis in osteogenic cultures. RAR agonist treatment resulted in significant upregulation of the Wnt antagonist, Sfrp4. This accompanied reduced nuclear and cytosolic β-catenin protein and reduced expression of the Wnt target gene Axin2, suggesting impaired Wnt/β-catenin signalling. To determine the effect of RAR inhibition in post-natal mice, IRX4310 was administered to male mice for 10 days and bones were assessed by µCT. No change to trabecular bone volume was observed, however, radial bone growth was impaired. These studies show RARs directly influence osteoblast and adipocyte formation from mesenchymal cells, and inhibition of RAR signalling in vivo impairs radial bone growth in post-natal mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号