首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   1篇
  国内免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2014年   4篇
  2013年   9篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   10篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1992年   2篇
  1991年   2篇
  1971年   1篇
  1969年   1篇
排序方式: 共有87条查询结果,搜索用时 281 毫秒
41.
42.
Fiedler A  Schipp R 《Tissue & cell》1991,23(6):813-819
The innervation of the branchial heart of Sepia officinalis was examined using TEM and glyoxylic acid induced fluorescence. In the cardiac ganglion and in cardiac nerves bluish-green fluorophores were seen associated with perikarya and varicose nerve fibres. Microspectrofluorometric analysis provided clear evidence that monoaminergic neurons in the branchial heart contain only catecholamines. Considering pharmacological data, it is more than likely that 5-hydroxytryptamine (serotonin) is not present in this system.  相似文献   
43.
In the cuttlefish, Sepia officinalis, the ovary appears to be one of the main sources of regulatory peptides involved in the successive steps of egg-laying. Following the identification of the SepCRP-1, which is a peptide extracted from ovary and involved in egg capsule secretion, investigations were focused on the identification of related peptides. Seven related-Sepia Capsule Releasing Peptides (R-SepCRPs) were identified by means of mass spectrometry and characterized using MS/MS spectra and/or Edman degradation. Finally, primary structures were verified by the comparison of MS/MS spectra from endogenic and synthetic peptides. This new ovarian peptide family exhibits a conserved SLXKD tag involved in the biological activity. LC-MS/MS screening clearly demonstrates that R-SepCRPs are restricted to the female genital tract. Expressed during vitellogenesis, they are released by vitellogenic follicles and full-grown oocytes (FGO) in the genital coelom. Biological activities suggest that R-SepCRPs would be responsible for the storage of FGO before mating and would take part in the mechanical secretion of egg capsule products, as previously described for SepCRP-1.  相似文献   
44.
45.
46.
应用扫描电镜和透射电镜观察了拟目乌贼(Sepia lycidas)精子的发生过程和超微结构。结果表明,精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精细胞和成熟精子五个阶段,其中精细胞可以分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五个时期,精细胞Ⅱ期又可分为前期和后期。细胞核经历了一个横向收缩、纵向拉长的过程,由圆形或椭圆形,变为不规则的纺锤形、稍弯曲的长柱形;核内染色质由絮状,变为絮块状、致密颗粒状、细纤维状、粗纤维状和片层状,直至高电子密度均质状;顶体由圆形,变为头盔形、圆锥形、倒“U”字形,直至子弹头形;线粒体由空泡状经过融合和迁移,变为内嵴丰富的鸡冠状,形成不完全包围鞭毛的线粒体距。成熟精子全长101.28μm,由头部和尾部组成,头部为稍弯曲的长柱形,长7.73μm,宽1.51μm,由顶体和细胞核组成;尾部细长,为93.18μm,为典型的“9 2”结构,由中段、主段和末段三部分组成。  相似文献   
47.
Prey camouflage is an evolutionary response to predation pressure. Cephalopods have extensive camouflage capabilities and studying them can offer insight into effective camouflage design. Here, we examine whether cuttlefish, Sepia officinalis, show substrate or camouflage pattern preferences. In the first two experiments, cuttlefish were presented with a choice between different artificial substrates or between different natural substrates. First, the ability of cuttlefish to show substrate preference on artificial and natural substrates was established. Next, cuttlefish were offered substrates known to evoke three main camouflage body pattern types these animals show: Uniform or Mottle (function by background matching); or Disruptive. In a third experiment, cuttlefish were presented with conflicting visual cues on their left and right sides to assess their camouflage response. Given a choice between substrates they might encounter in nature, we found no strong substrate preference except when cuttlefish could bury themselves. Additionally, cuttlefish responded to conflicting visual cues with mixed body patterns in both the substrate preference and split substrate experiments. These results suggest that differences in energy costs for different camouflage body patterns may be minor and that pattern mixing and symmetry may play important roles in camouflage.  相似文献   
48.
In this study, the ontogenetic trajectories of septal spacing between succeeding chambers of five modern cuttlefishes, Sepia esculenta, S. lycidas, S. latimanus, S. pharaonic and Sepiella japonica, which were all wild-caught around Japan, were analysed. The ontogenetic trajectories of septal spacing of all examined cuttlefishes demonstrate a decrease in septal spacing followed by an increase during the earliest ontogenetic stage. This trend is assumed to be related to hatching. After the rapid decrease and increase in septal spacing, species-dependent trends occur irrespective of sex and locality. Based on cluster analyses of general trends recognized in each species, the five examined species can be categorized into two groups: (1) a group by S. pharaonis, S. esculenta and Sepiella japonica; and (2) S. latimanus and S. lycidas as more distant branching groups within the five examined species. This classification is concordant with some phylogenetic clades determined from DNA analyses. Therefore, we hypothesized that the ontogenetic trajectories of septal spacing among modern cuttlefishes are phylogenetically dependent. If this hypothesis holds in fossil cuttlefishes, the examination of ontogenetic trajectories of septal spacing would give new insight into the recognition not only of the life history but also of the phylogeny of fossil cuttlefishes.  相似文献   
49.
Abstract

Several genera of cephalopods (Nautilus, Sepia, Euprymna and Idiosepius) produce adhesive secretions, which are used for attachment to the substratum, for mating and to capture prey. These adhesive structures are located in different parts of the body, viz. in the digital tentacles (Nautilus), in the ventral surface of the mantle and fourth arm pair (Sepia), in the dorsal epidermis (Euprymna), or in the dorsal mantle side and partly on the fins (Idiosepius). Adhesion in Sepia is induced by suction of dermal structures on the mantle, while for Nautilus, Euprymna and Idiosepius adhesion is probably achieved by chemical substances. Histochemical studies indicate that in Nautilus and Idiosepius secretory cells that appear to be involved in adhesion stain for carbohydrates and protein, whilst in Euprymna only carbohydrates are detectable. De-adhesion is either achieved by muscle contraction of the tentacles and mantle (Nautilus and Sepia) or by secretion of substances (Euprymna). The de-adhesive mechanism used by Idiosepius remains unknown.  相似文献   
50.
Cuttlefish camouflage: a quantitative study of patterning   总被引:2,自引:0,他引:2  
To investigate camouflage design, we compared the responses of two species of cuttlefish ( Sepia officinalis and Sepia pharaonis ) with controlled but naturalistic backgrounds, consisting of mixtures of 1-mm and 9-mm diameter coloured pebbles. Quantitative analysis of image data using methods adapted from functional imaging research found differences in how the two species camouflage themselves. Whereas S. officinalis switches from background resemblance to a disruptive pattern as it moves from a fine to a coarsely patterned background particle, S. pharaonis blends the two types of pattern. We suggest that the differences may arise because S. pharaonis needs to produce camouflage that is effective when viewed over a relatively wide range of distances.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 335–345.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号