首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   11篇
  国内免费   1篇
  587篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2015年   4篇
  2014年   24篇
  2013年   23篇
  2012年   11篇
  2011年   23篇
  2010年   12篇
  2009年   25篇
  2008年   35篇
  2007年   22篇
  2006年   20篇
  2005年   26篇
  2004年   27篇
  2003年   27篇
  2002年   9篇
  2001年   9篇
  2000年   10篇
  1999年   10篇
  1998年   9篇
  1997年   9篇
  1996年   12篇
  1995年   12篇
  1994年   15篇
  1993年   12篇
  1992年   15篇
  1991年   15篇
  1990年   13篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1986年   13篇
  1985年   12篇
  1983年   4篇
  1982年   8篇
  1981年   10篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1974年   4篇
  1973年   6篇
  1972年   8篇
  1971年   10篇
  1969年   2篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
31.
Spiders show a wide range of sensory capabilities as evidenced by behavioural observations. Accordingly, spiders possess diverse sensory structures like mechano-, hygro-, thermo- or chemoreceptive sensilla. As to chemoreceptive structures, only trichoid tip-pore sensilla were found so far that were tested for gustation. That spiders are also able to receive airborne signals is corroborated by numerous behavioural experiments but the responsible structures have not been determined yet. Here, we provide sensilla distribution maps of pedipalps and walking legs of both sexes of the wasp spider Argiope bruennichi whose biology and mating system is well explored. By means of scanning electron microscopy, we scrutinized whether there is in fact only one type of trichoid pore sensillum and if so, if there are deviations in the outer structure of the tip-pore sensilla depending on their position on the body. We also describe the external structure and distribution of slit sense organs, trichobothria and tarsal organs. Our study shows that all four sensillum types occur on pedipalps and walking legs of both sexes. As to chemosensory organs, only tip-pore sensilla were found, suggesting that this sensillum type is used for both gustation and olfaction. The highest numbers of tip-pore sensilla were observed on metatarsi and tarsi of the first two walking legs. Mechanosensitive slit sense organs occur as single slit sensilla in rows along all podomers or as lyriform organs next to the joints. The mechanosensitive trichobothria occur on the basal part of tibiae and metatarsi. Tarsal organs occur on the dorsal side of all tarsi and the male cymbium. The distribution maps of the sensilla are the starting point for further exploration of internal, morphological differences of the sensilla from different regions on the body. Cryptic anatomical differences might be linked to functional differences that can be explored in combination with electrophysiological analyses. Consequently, the maps will help to elucidate the sensory world of spiders.  相似文献   
32.
Wetas are ancient Gondwanan orthopterans (Anostostomatidae) with many species endemic to New Zealand. Like all Orthoptera they possess efferent neuromodulatory dorsal unpaired median (DUM) neurons, with bilaterally symmetrical axons, that are important components of motor networks. These neurons produce overshooting action potentials and are easily stimulated by a variety of external mechanosensory stimuli delivered to the body and appendages. In particular, stimulation of the antennae, mouth parts, tarsi and femora of the legs, abdomen, cerci and ovipositor is very effective in activating DUM neurons in the metathoracic ganglion of wetas. In addition, looming visual stimuli or light on-, light off-stimuli excite many metathoracic DUM neurons. These DUM sensory reflex pathways remain viable after the prothoracic to subesophageal connective is cut, whereas in locusts such reflex pathways are interrupted by the ablation. This suggests that, in wetas, sensory reflex pathways for DUM activation are organized in a less centralized fashion than in locusts, and may therefore reflect a plesiomorphic evolutionary state in the weta. In addition, many weta DUM neurons exhibit slow rhythmic bursting which also persists following the connective ablation.  相似文献   
33.
Summary The compound eye of female (diploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye is emarginate, and externally consists of roughly 70–100 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers. The lens facet overlies a crystalline cone of the acone type which is roughly hourglass-shaped. Pigment cells envelop the entire ommatidium, and pigment granules also are abundant throughout the cytoplasm of the 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells effectively fuse into a rhabdom that extends from the base of the crystalline cone deeply into the ommatidium. Six distal peripheral retinular cells encircle the 2 central cells, and their rhabdomeres join laterally to form a rhabdomeric ring around the central rhabdom. The rhabdom and rhabdomeric ring are effectively separated by the cytoplasm of the two central retinular cells which contains the usual organelles and an abundance of shielding pigment granules. Eight axons per ommatidium gather in a tracheae-less fascicle before exiting the eye through the fenestrate basement membrane. No tracheation was observed among the retinular cells. Each Semper cell of each observed crystalline cone contained an abundance of virus-like particles near the cell nucleus. The insect is laboratory reared, and the visual system seems very amenable to photoreceptor investigations.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N.  相似文献   
34.
Response regulators of bacterial sensory transduction systems generally consist of receiver module domains covalently linked to effector domains. The effector domains include DNA binding and/or catalytic units that are regulated by sensor kinase-catalyzed aspartyl phosphorylation within their receiver modules. Most receiver modules are associated with three distinct families of DNA binding domains, but some are associated with other types of DNA binding domains, with methylated chemotaxis protein (MCP) demethylases, or with sensor kinases. A few exist as independent entities which regulate their target systems by noncovalent interactions.In this study the molecular phylogenies of the receiver modules and effector domains of 49 fully sequenced response regulators and their homologues were determined. The three major, evolutionarily distinct, DNA binding domains found in response regulators were evaluated for their phylogenetic relatedness, and the phylogenetic trees obtained for these domains were compared with those for the receiver modules. Members of one family (family 1) of DNA binding domains are linked to large ATPase domains which usually function cooperatively in the activation of E. Coli 54-dependent promoters or their equivalents in other bacteria. Members of a second family (family 2) always function in conjunction with the E. Coli 70 or its equivalent in other bacteria. A third family of DNA binding domains (family 3) functions by an uncharacterized mechanism involving more than one a factor. These three domain families utilize distinct helix-turn-helix motifs for DNA binding.The phylogenetic tree of the receiver modules revealed three major and several minor clusters of these domains. The three major receiver module clusters (clusters 1, 2, and 3) generally function with the three major families of DNA binding domains (families 1, 2, and 3, respectively) to comprise three classes of response regulators (classes 1, 2, and 3), although several exceptions exist. The minor clusters of receiver modules were usually, but not always, associated with other types of effector domains. Finally, several receiver modules did not fit into a cluster. It was concluded that receiver modules usually diverged from common ancestral protein domains together with the corresponding effector domains, although domain shuffling, due to intragenic splicing and fusion, must have occurred during the evolution of some of these proteins.Multiple sequence alignments of the 49 receiver modules and their various types of effector domains, together with other homologous domains, allowed definition of regions of striking sequence similarity and degrees of conservation of specific residues. Sequence data were correlated with structure/function when such information was available. These studies should provide guides for extrapolation of results obtained with one response regulator to others as well as for the design of future structure/function analyses. Correspondence to: M.H. Saier, Jr.  相似文献   
35.
Arachnids and insects use long, thin hairs as motion sensors to detect signals contained in the movement of the surrounding air. These hairs often form groups with a small spacing of tens to hundreds of micrometers between them. For air oscillation frequencies of biological interest, the potential exists for viscosity-mediated coupling among hairs in a group affecting their response characteristics. Even a small diameter hair can, in principle, affect the flow field around it and the dynamics of the hairs in its neighborhood. The viscosity-mediated coupling between a pair of hairs is investigated here both experimentally and theoretically. The conditions for the existence of the coupling effect, and its magnitude as a function of relevant parameters, are determined. In the range of biologically relevant frequencies (30–300 Hz), viscous coupling between pairs of hairs is only very small in the case of the spider Cupiennius salei. Theoretical analysis points to the relatively large spacing between hairs (20 to 50 hair diameters) and the tuning of the hairs to the above-mentioned frequencies to explain the practical absence of coupling.  相似文献   
36.
昆虫嗅觉相关蛋白及嗅觉识别机理研究概述   总被引:1,自引:0,他引:1  
嗅觉是昆虫产生行为的基础之一,在长期进化的过程中昆虫形成了复杂的嗅觉系统,完成这一过程,需要有多种与嗅觉相关的蛋白参与,包括气味结合蛋白、化学感受蛋白、气味受体和感觉神经元膜蛋白等。了解昆虫感受外界信息的嗅觉机制可以帮助我们更好地理解昆虫识别配偶、天敌及寻找食物来源、产卵场地等行为特征,为进一步调控昆虫的行为、防控害虫侵袭、保护和利用有益昆虫奠定基础。本文综述了昆虫嗅觉相关的几类重要蛋白的生化特性和生理功能,并对昆虫气味分子的识别机制、气味分子在昆虫体内运输机制的最新研究进展进行了概述。  相似文献   
37.
Cranial placodes are local thickenings of the vertebrate head ectoderm that contribute to the paired sense organs (olfactory epithelium, lens, inner ear, lateral line), cranial ganglia and the adenohypophysis. Here we use tissue grafting and dye injections to generated fate maps of the dorsal cranial part of the non-neural ectoderm for Xenopus embryos between neural plate and early tailbud stages. We show that all placodes arise from a crescent-shaped area located around the anterior neural plate, the pre-placodal ectoderm. In agreement with proposed roles of Six1 and Pax genes in the specification of a panplacodal primordium and different placodal areas, respectively, we show that Six1 is expressed uniformly throughout most of the pre-placodal ectoderm, while Pax6, Pax3, Pax8 and Pax2 each are confined to specific subregions encompassing the precursors of different subsets of placodes. However, the precursors of the vagal epibranchial and posterior lateral line placodes, which arise from the posteriormost pre-placodal ectoderm, upregulate Six1 and Pax8/Pax2 only at tailbud stages. Whereas our fate map suggests that regions of origin for different placodes overlap extensively with each other and with other ectodermal fates at neural plate stages, analysis of co-labeled placodes reveals that the actual degree of overlap is much smaller. Time lapse imaging of the pre-placodal ectoderm at single cell resolution demonstrates that no directed, large-scale cell rearrangements occur, when the pre-placodal region segregates into distinct placodes at subsequent stages. Our results indicate that individuation of placodes from the pre-placodal ectoderm does not involve large-scale cell sorting in Xenopus.  相似文献   
38.
We have investigated the effect of some metabolic drugs, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,4-dinitrophenol (DNP), sodium azide (NaN3), on the photobehavior of single cells of Euglena gracilis, in order to clarify the relevance of different metabolic pathways in the process of photoperception and sensory transduction in this alga. The results obtained show that the photophobic response of Euglena is not affected by the action of these drugs. This suggests that neither the photosynthetic process nor oxidative phosphorylation play a significant role in the phenomenon of photosensory transduction in Euglena.List of Abbreviations DNP 2,4-dinitrophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSI Photosystem I - PSII Photosystem II  相似文献   
39.
Summary By combined enzymatic and mechanical treatment, it was possible to dissociate the sensory epithelium of developing antennae of male Antheraea polyphemus and A. pernyi silkmoths from the stage of separation of the antennal branches up to the early stages of cuticle deposition. Large numbers of entire developing trichoid sensilla were isolated. These are characterized by a large trichogen cell with a long apical, hair-forming process and a large nucleus. A cluster of 2–3 sensory neurons, enclosed by the thecogen cell, is situated in the basal region. The dendrites run past the nucleus of the trichogen cell into the apical process from which they protrude laterally. The nuclei of the tormogen and a 4th enveloping cell can be distinguished near the base of the prospective hair. After further dissociation, only the neuron clusters remain, still enclosed by their thecogen cell and often attached to the antennal branch nerve via their axons. It is finally possible to disrupt the thecogen cells and the axons, leaving the sensory neurons with inner dendritic segments and axon stumps. The majority of these neurons can be expected to be olfactory.  相似文献   
40.
We examined whether resveratrol increases insulin-like growth factor-I (IGF-I) production in the hippocampus by stimulating sensory neurons in the gastrointestinal tract, thereby improving cognitive function in mice. Resveratrol increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice. Increases in tissue levels of CGRP, IGF-I, and IGF-I mRNA and immunohistochemical expression of IGF-I were observed in the hippocampus at 3 weeks after oral administration of resveratrol in WT mice. Significant enhancement of angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus in these animals (P<.01). Improvement of spatial learning in the Morris water maze was observed in WT mice after administration of resveratrol. None of the effects of resveratrol observed in WT mice were seen after resveratrol administration in CGRP-knockout (CGRP−/−) mice. Although red wine containing 20 mg/L of resveratrol produced effects similar to those of resveratrol administrationl in WT mice, neither red wine containing 3.1 mg/L of resveratrol nor white wine exhibited such effects in WT mice. Resveratrol was undetectable in the hippocampus of WT mice administered resveratrol and red wine containing 20 mg/L of resveratrol. These observations strongly suggest that resveratrol increases hippocampal IGF-I production via sensory neuron stimulation in the gastrointestinal tract, thereby improving cognitive function in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号