首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   694篇
  免费   14篇
  国内免费   1篇
  2023年   5篇
  2021年   10篇
  2020年   9篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2015年   8篇
  2014年   26篇
  2013年   33篇
  2012年   16篇
  2011年   23篇
  2010年   14篇
  2009年   27篇
  2008年   37篇
  2007年   22篇
  2006年   22篇
  2005年   28篇
  2004年   29篇
  2003年   30篇
  2002年   12篇
  2001年   12篇
  2000年   14篇
  1999年   12篇
  1998年   11篇
  1997年   11篇
  1996年   16篇
  1995年   13篇
  1994年   15篇
  1993年   18篇
  1992年   15篇
  1991年   18篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   9篇
  1986年   14篇
  1985年   14篇
  1983年   6篇
  1982年   11篇
  1981年   15篇
  1980年   6篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   7篇
  1974年   5篇
  1973年   7篇
  1972年   9篇
  1971年   13篇
  1970年   4篇
排序方式: 共有709条查询结果,搜索用时 476 毫秒
41.
Summary In crayfish, the severed distal segment of single lateral giant axon (SLGA) often survives for at least 10 months after lesioning if this segment retains a septal region of apposition with an adjacent, intact SLGA. In control (unsevered) SLGAs, this septal region usually contains gap junctions and 50–60 nm vesicles near the axolemma of both SLGAs. From 1–14 days after lesioning, the distal segment of a severed SLGA undergoes obvious ultrastructural changes in mitochondria and neurotubular organization compared to control SLGAs or to adjacent, intact SLGAs in the same animal. Gap junctions are very difficult to locate in severed SLGAs within 24 h after lesioning. From two weeks to ten months after lesioning, the surviving stumps of severed SLGAs often appear remarkably normal except that structures normally associated with the presence of gap junctions remain very difficult to find.These and other data suggest that SLGA distal segments receive trophic support from adjacent, intact SLGAs. The mechanism of this support probably could not be via diffusion across gap junctions between intact and severed SLGAs since gap junctions largely disappear after lesioning. However, trophic maintenance could occur via the exocytotic — pinocytotic action of 50–60 nm vesicles which are always present on both sides of the septum between an intact SLGA and a severed SLGA distal segment.This work was supported by NIH research grant NS-14412 and and RCDA 00070 to G.D.B.  相似文献   
42.
We have investigated the effect of some metabolic drugs, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2,4-dinitrophenol (DNP), sodium azide (NaN3), on the photobehavior of single cells of Euglena gracilis, in order to clarify the relevance of different metabolic pathways in the process of photoperception and sensory transduction in this alga. The results obtained show that the photophobic response of Euglena is not affected by the action of these drugs. This suggests that neither the photosynthetic process nor oxidative phosphorylation play a significant role in the phenomenon of photosensory transduction in Euglena.List of Abbreviations DNP 2,4-dinitrophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PSI Photosystem I - PSII Photosystem II  相似文献   
43.
The neurones from the wind-sensitive hairs on the locust head have been filled with cobalt chloride and intensified with silver. All the neurones project through the brain to the suboesophageal ganglion, some continue to the prothoracic ganglion and a few as far as the mesothoracic ganglion. Three different types of projection are described and a regrouping is proposed of Weis-Fogh's five hair fields into three areas. The distribution of the neurones from these areas is described in relation to other structures in the ganglion and is discussed in relation to the function of the hair fields in stability control and grooming.  相似文献   
44.
45.
Summary The compound eye of female (diploid) Xyleborus ferrugineus beetles was examined with scanning and transmission electron microscopy. The eye is emarginate, and externally consists of roughly 70–100 facets. Each ommatidium is composed of a thickly biconvex lenslet with about 50 electron dense and rare layers. The lens facet overlies a crystalline cone of the acone type which is roughly hourglass-shaped. Pigment cells envelop the entire ommatidium, and pigment granules also are abundant throughout the cytoplasm of the 8 retinular cells. The rhabdomeres of 2 centrally situated photoreceptor cells effectively fuse into a rhabdom that extends from the base of the crystalline cone deeply into the ommatidium. Six distal peripheral retinular cells encircle the 2 central cells, and their rhabdomeres join laterally to form a rhabdomeric ring around the central rhabdom. The rhabdom and rhabdomeric ring are effectively separated by the cytoplasm of the two central retinular cells which contains the usual organelles and an abundance of shielding pigment granules. Eight axons per ommatidium gather in a tracheae-less fascicle before exiting the eye through the fenestrate basement membrane. No tracheation was observed among the retinular cells. Each Semper cell of each observed crystalline cone contained an abundance of virus-like particles near the cell nucleus. The insect is laboratory reared, and the visual system seems very amenable to photoreceptor investigations.This research was supported by the Director of the Research Division, C.A.L.S., University of Wisconsin, Madison; and in part by research grant No. RR-00779 from the Division of Research Resources, National Institutes of Health and by funds from the Schoenleber Foundation, Milwaukee, WI to D.M.N.  相似文献   
46.
Summary Ultrastructural observation of the sensory pore of several species of Natantia reveals a twofold organ. A main sensory pore (M.S.P.) comprises a layer of supporting cells which encapsulate the terminal region of sensory cell bodies. These sensory cells include two ciliary processes dividing into a flat sub-cuticular cavity. The cuticle opposite is thin and perforated with crater-like paired micropores. Next to the main sensory pore, a second organ, the lateral sensory pore (L.S.P.), is smaller and more difficult to observe. A complex-shaped cavity underlies a contorted epicuticular invagination. Ciliary outer segments, belonging to a bundle of sensory cells, branch out in this cavity.M.S.P. and L.S.P. appear to be chemoreceptors.I thank Mme Colette Besse for her technical assistance and Mr. A. Martin, photographer.  相似文献   
47.
Abstract: Resiniferatoxin and capsaicin are sensory neurone-specific excitotoxins that operate a common cation channel in nociceptors. Resiniferatoxin is structurally similar to capsaicin and to phorbol esters. Specific [3H]-resiniferatoxin binding, which was detected in the membrane ( K D value 1.8 ± 0.2 n M ) but not cytosolic fraction of rat dorsal root ganglia, could not be displaced by phorbol 12,13-dibutyrate. Conversely, resiniferatoxin did not displace [3H]phorbol 12,13-dibutyrate binding in either the cytosolic or membrane fraction. Resiniferatoxin and capsaicin both caused translocation of protein kinase C in dorsal root ganglion neurones (EC50 value 18 ± 3 n M ). This translocation was greatly reduced but not abolished, in the absence of external Ca2+, suggesting that it was secondary to Ca2+ entry. Resiniferatoxin also caused direct activation of a Ca2+- and lipid-dependent kinase (or kinases) in the cytosolic fraction of dorsal root ganglia, at concentrations (100 n M to 10 µ M ) higher than required for displacement of [3H]resiniferatoxin binding or translocation of protein kinase C. Capsaicin (up to 10 µ M ) was unable to mimic this effect. These data imply that although resiniferatoxin-induced translocation of protein kinase C in dorsal root ganglion neurones was mainly indirect, it also caused direct activation of a protein kinase C-like kinase in these cells.  相似文献   
48.
Detection and interpretation of olfactory cues are critical for the survival of many organisms. Remarkably, species across phyla have strikingly similar olfactory systems suggesting that the biological approach to chemical sensing has been optimized over evolutionary time1. In the insect olfactory system, odorants are transduced by olfactory receptor neurons (ORN) in the antenna, which convert chemical stimuli into trains of action potentials. Sensory input from the ORNs is then relayed to the antennal lobe (AL; a structure analogous to the vertebrate olfactory bulb). In the AL, neural representations for odors take the form of spatiotemporal firing patterns distributed across ensembles of principal neurons (PNs; also referred to as projection neurons)2,3. The AL output is subsequently processed by Kenyon cells (KCs) in the downstream mushroom body (MB), a structure associated with olfactory memory and learning4,5. Here, we present electrophysiological recording techniques to monitor odor-evoked neural responses in these olfactory circuits.First, we present a single sensillum recording method to study odor-evoked responses at the level of populations of ORNs6,7. We discuss the use of saline filled sharpened glass pipettes as electrodes to extracellularly monitor ORN responses. Next, we present a method to extracellularly monitor PN responses using a commercial 16-channel electrode3. A similar approach using a custom-made 8-channel twisted wire tetrode is demonstrated for Kenyon cell recordings8. We provide details of our experimental setup and present representative recording traces for each of these techniques.  相似文献   
49.
A comparison was made between different categories of mechanically sensitive, ventrolateral spinal axons to assess their sensitivity to the itch-producing substance cowhage. Of 52 wide-dynamic-range (WDR) units, 17 had contralateral, 22 had ipsilateral, and 13 had bilateral receptive fields. Of the 5 low-threshold units, 1 had an ipsilateral receptive field and the remainder were bilateral. Among the high-threshold units, 10 were contralateral, 6 ipsilateral, and 5 bilateral. Although there was no evidence of cowhage sensitivity in either low- or high-threshold spinal axons, neurons with WDR properties were reactive to cowhage. WDR neurons were subclassified on the basis of their resting discharge pattern as having intermittent, continuous, or no resting discharge. WDR units with an intermittent pattern of resting discharge demonstrated a significant sensitivity to active cowhage and hence might be regarded as pruritogen-responsive spinal axons. Inactive cowhage was used as a control stimulus. In some WDR units with large receptive fields, there were observations suggesting convergence of chemoreceptive and mechanoreceptive inputs, which produced inhibitory as well as excitatory effects.  相似文献   
50.
Cranial placodes are ectodermal regions that contribute extensively to the vertebrate peripheral sensory nervous system. The development of the ophthalmic trigeminal (opV) placode, which gives rise only to sensory neurons of the ophthalmic lobe of the trigeminal ganglion, is a useful model of sensory neuron development. While key differentiation processes have been characterized at the tissue and cellular levels, the signaling pathways governing opV placode development have not. Here we tested in chick whether the canonical Wnt signaling pathway regulates opV placode development. By introducing a Wnt reporter into embryonic chick head ectoderm, we show that the canonical pathway is active in Pax3+ opV placode cells as, or shortly after, they are induced to express Pax3. Blocking the canonical Wnt pathway resulted in the failure of targeted cells to adopt or maintain an opV fate, as assayed by the expression of various markers including Pax3, FGFR4, Eya2, and the neuronal differentiation markers Islet1, neurofilament, and NeuN, although, surprisingly, it led to upregulation of Neurogenin2, both in the opV placode and elsewhere in the ectoderm. Activating the canonical Wnt signaling pathway, however, was not sufficient to induce Pax3, the earliest specific marker of the opV placode. We conclude that canonical Wnt signaling is necessary for normal opV placode development, and propose that other molecular cues are required in addition to Wnt signaling to promote cells toward an opV placode fate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号