首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   517篇
  免费   7篇
  国内免费   15篇
  2022年   5篇
  2021年   8篇
  2020年   11篇
  2019年   10篇
  2018年   12篇
  2017年   5篇
  2016年   7篇
  2015年   13篇
  2014年   30篇
  2013年   24篇
  2012年   16篇
  2011年   28篇
  2010年   19篇
  2009年   28篇
  2008年   30篇
  2007年   30篇
  2006年   23篇
  2005年   26篇
  2004年   32篇
  2003年   18篇
  2002年   17篇
  2001年   9篇
  2000年   11篇
  1999年   11篇
  1998年   10篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   5篇
  1988年   8篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   6篇
排序方式: 共有539条查询结果,搜索用时 171 毫秒
451.
Peroxisomal enzyme activities in attached senescing leaves   总被引:4,自引:0,他引:4  
Recently it has been demonstrated that detached leaves show glyoxysomal enzyme activities when incubated in darkness for several days. In this report glyoxylate-cycle enzymes have been detected in leaves of rice (Oryza sativa L.) and wheat (Triticum durum L.) from either naturally senescing or dark-treated plants. Isolated peroxisomes of rice and wheat show isocitrate lyase (EC 4.1.3.1), malate synthase (EC 4.1.3.2) and -oxidation activities. Leaf peroxisomes from dark-induced senescing leaves show glyoxylic-acid-cycle enzyme activities two to four times higher than naturally senescing leaves. The glyoxysomal activities detected in leaf peroxisomes during natural foliar senescence may represent a reverse transition of the peroxisomes into glyoxysomes.This work was supported by CNR Italy, special grant RAISA, subproject 2, paper no. 26.  相似文献   
452.
The effect of pollen and senescent petals on the suppression of alfalfa (Medicago sativa L.) blossom blight (Sclerotinia sclerotiorum) by the mycoparasite Coniothyrium minitans was investigated. When incubated at 20°C for 39 h, germination of conidia of C. minitans and ascospores of S. sclerotiorum was 99.9 and 98.6%, respectively, in the presence of alfalfa pollen (9×104 pollen grains mL?1), whereas spore germination of both organisms was <0.5% in the absence of pollen (in water). In the presence of a commercial pollen product, Swiss? pollen granules (mainly bee pollen), germination was 99.6% for C. minitans and 98.3% for S. sclerotiorum when the pollen concentration was 1.0% (w/v). When the pollen concentration was reduced to 0.1% (w/v), germination was reduced to 13.0% for C. minitans and 10.8% for S. sclerotiorum. Tests on detached alfalfa florets showed that the colonization of alfalfa florets by S. sclerotiorum was significantly suppressed by C. minitans in the presence of pollen (1.0% Swiss? pollen granules), especially when C. minitans was inoculated 1-day before S. sclerotiorum. In vivo inoculation tests revealed that the efficacy of C. minitans in the protection of alfalfa pods from the infection by S. sclerotiorum was affected by the time at which C. minitans was applied. When C. minitans was applied on young blossoms of alfalfa at the anthesis stage, pod infection was 96.6% for the treatment of C. minitans+S. sclerotiorum and 99.6% for the treatment of S. sclerotiorum alone. However, when C. minitans was applied on senescent petals of alfalfa at the pod development stage, pod infection was 8.0% for the treatment of C. minitans+S. sclerotiorum compared to 90.8% for the treatment of S. sclerotiorum alone. These results suggest that timing of the application of C. minitans is critical for the mycoparasite to compete with S. sclerotiorum for the source of nutrients from pollen and senescent petals, and for its control of alfalfa blossom blight caused by S. sclerotiorum.  相似文献   
453.
454.
Type C stay-green mutants are defined as being defective in the pathway of chlorophyll breakdown, which involves pheophorbide a oxygenase (PAO), required for loss of green color. By analyzing senescence parameters, such as protein degradation, expression of senescence-associated genes and loss of photosynthetic capacity, we demonstrate that JI2775, the green cotyledon (i) pea line used by Gregor Mendel to establish the law of genetics, is a true type C stay-green mutant. STAY-GREEN (SGR) had earlier been shown to map to the I locus. The defect in JI2775 is due to both reduced expression of SGR and loss of SGR protein function. Regulation of PAO through SGR had been proposed. By determining PAO protein abundance and activity, we show that PAO is unaffected in JI2775. Furthermore we show that pheophorbide a accumulation in the mutant is independent of PAO. When silencing SGR expression in Arabidopsis pao1 mutant, both pheophorbide a accumulation and cell death phenotype, typical features of pao1, are lost. These results confirm that SGR function within the chlorophyll catabolic pathway is independent and upstream of PAO. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
455.
Reductions in reproductive performance with age have been predicted to result from a general deterioration of performance, i.e. senescence. Variation among species in the onset and rate of this deterioration depends on the age-independent extrinsic mortality rate. If few individuals reach a specific age, the strength of selection for mechanisms that retard senescence will be reduced. The aim of this study was to investigate the age-dependent variation in two reproductive traits in a species, the Treecreeper (Certhia familiaris), with a low between-year survival rate. Clutch size did not vary with age, but egg size decreased from the first to the second breeding season. Compared with published age-dependent reductions in egg size, Treecreepers demonstrate the earliest onset of senescence, but they also have the highest total mortality rate, corroborating the predictions from the evolutionary theory of senescence. Production of eggs seems to be demanding for female Treecreepers, as egg size is also positively dependent on ambient temperature, further stressing the vulnerability of this trait for small reductions in female performance.  相似文献   
456.
457.
孕穗期渍水对冬小麦根系衰老的影响   总被引:10,自引:1,他引:9  
选用耐湿性不同的3个冬小麦栽培品种,采用土柱栽培试验方法研究了孕穗期渍水逆境对冬小麦根系生长发育、^32P吸收、分配及根系衰老的影响。结果表明,孕穗期渍水逆境降低了地下根系干重、根系活力和根系SOD酶活性;使根系质膜相对透性和膜脂过氧化水平(MDA含量)提高;同时,孕穗期渍水逆境严重影响根系吸收、运输和分配^32P的能力,从而加速了根系衰老。  相似文献   
458.
Oxygen free radicals have a major impact on senescence of primary human cells. In replicative senescence, which is induced by uncapping of telomeres, the rate of telomere shortening is largely determined by telomere-specific accumulation of DNA damage induced by reactive oxygen species (ROS). More intense ROS-generating stressors can induce premature senescence via generation of telomere-independent DNA damage. Interestingly, ROS levels were also elevated when premature senescence was triggered by pathways downstream or independent of DNA damage. This has led to the suggestion that ROS generation could be a specific component of the signalling pathways inducing senescence. However, the available data are compatible with the concept that senescence is triggered as a DNA damage response. ROS appear to be involved as inducers of DNA damage rather than as specific signalling molecules. The upregulation of ROS production often seen in premature senescence might be related to retrograde response initiated by mitochondria.  相似文献   
459.
Pituitary tumor transforming gene (PTTG1, securin) is involved in cell-cycle control through inhibition of sister-chromatid separation. Elevated levels of PTTG1 were found to be associated with many different tumor types that might be involved in late stage tumor progression. However, the role of PTTG1 in early stage of tumorigenesis is unclear. Here we utilized the adenovirus expression system to deliver PTTG1 into normal human fibroblasts to evaluate the role of PTTG1 in tumorigenesis. Expressing PTTG1 in normal human fibroblasts inhibited cell proliferation. Several senescence-associated (SA) phenotypes including increased SA-β-galactosidase activities, decreased bromodeoxyuridine incorporation, and increased SA-heterochromatin foci formation were also observed in PTTG1-expressing cells, indicating that PTTG1 overexpression induced a senescent phenotype in normal cells. Significantly, the PTTG1-induced senescence is p53-dependent and telomerase-independent, which is distinctively different from that of replicative senescence. The mechanism of PTTG1-induced senescence was also analyzed. Consistent with its role in regulating sister-chromatid separation, overexpression of PTTG1 inhibited the activation of separase. Consequently, the numbers of cells with abnormal nuclei morphologies and chromosome separations were increased, which resulted in activation of the DNA damage response. Thus, we concluded that PTTG1 overexpression in normal human fibroblasts caused chromosome instability, which subsequently induced p53-dependent senescence through activation of DNA-damage response pathway.  相似文献   
460.
Many physiological and biochemical plant processes affected by salt stress trigger premature nodule senescence and decrease their ability to fix nitrogen. The objective of this study was to evaluate the role of arbuscular mycorrhiza (AM) in moderating salt-induced premature nodule senescence in Cajanus cajan (L.) Millsp. Greenhouse experiments were conducted in which the plants were exposed to salinity stress of 4, 6, and 8 dSm−1. Various parameters linked to nodule senescence were assessed at 80 days after sowing. Nodulation, leghemoglobin content, and nitrogenase enzyme activity measured as acetylene-reducing activity (ARA) were evaluated. Two groups of antioxidant enzymes were studied: (1) enzymes involved in the detoxification of O2 radicals and H2O2, namely, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), and (2) enzymes that are important components of the ascorbate glutathione pathway responsible for the removal of H2O2, namely, glutathione reductase (GR) and ascorbate peroxidase (APOX). Exposure of plants to salinity stress enhanced nodule formation; however, nodule growth suffered remarkably and a marked decline in nodule biomass, relative permeability, and lipid peroxidation was observed. Leghemoglobin content and ARA were reduced under saline conditions. AM significantly improved nodulation, leghemoglobin content, and nitrogenase activity under salt stress. Activities of SOD, CAT, APOX, POX, and GR increased markedly in mycorrhizal-stressed plants. A synthesis of the evidence obtained in this study suggests a correlation between enhanced levels of antioxidant enzyme activities, reduced membrane permeability, reduced lipid peroxidation, and improved nitrogen-fixing efficiency of AM plants under stressed and unstressed conditions. These factors could be responsible for the protective effects of mycorrhiza against stress-induced premature nodule senescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号