首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   919篇
  免费   107篇
  国内免费   72篇
  1098篇
  2024年   2篇
  2023年   22篇
  2022年   17篇
  2021年   31篇
  2020年   33篇
  2019年   45篇
  2018年   39篇
  2017年   53篇
  2016年   34篇
  2015年   46篇
  2014年   52篇
  2013年   41篇
  2012年   58篇
  2011年   48篇
  2010年   41篇
  2009年   72篇
  2008年   58篇
  2007年   56篇
  2006年   60篇
  2005年   37篇
  2004年   34篇
  2003年   30篇
  2002年   42篇
  2001年   23篇
  2000年   19篇
  1999年   16篇
  1998年   12篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   9篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1971年   1篇
排序方式: 共有1098条查询结果,搜索用时 9 毫秒
91.
GSDS: 基因结构显示系统   总被引:62,自引:1,他引:62  
郭安源  朱其慧  陈新  罗静初 《遗传》2007,29(8):1023-1026
构建了一个用于绘制基因结构示意图的网站系统(http://gsds.cbi.pku.edu.cn/)。用户可提交核酸序列、NCBI核酸序列号或基因外显子位置信息, 得到基因结构示意图; 并可指定在基因结构图上标注某些特定区域。系统允许用户同时输入多个基因, 并指定输出次序和标注区域。结果可用位图和矢量图两种图形格式显示。点击位图格式结果, 可以查看相应序列。系统提供中英文两种用户界面。  相似文献   
92.
1. In brown food webs of the forest floor, necromass (e.g. insect carcasses and frass) falling from the canopy feeds both microbes and ants, with the former decomposing the homes of the latter. In a tropical litter ant community, we added necromass to 1 m2 plots, testing if it added as a net food (increasing ant colony growth and recruitment) or destroyer of habitat (by decomposing leaf litter). 2. Maximum, but not mean, colony growth rates were higher on +food plots. However, neither average colony size, nor density was higher on +food plots. In contrast, +food plots saw diminished availability of leaf litter and higher microbial decomposition of cellulose, a main component of the organic substrate that comprises litter habitat. 3. Furthermore, necromass acted as a limiting resource to the ant community only when nest sites were supplemented on +food plots in a second experiment. Many of these +food +nest plots were colonised by the weedy species Wasmannia auropunctata. 4. Combined, these results support the more food–less habitat hypothesis and highlight the importance of embedding studies of litter ant ecology within broader decomposer food web dynamics.  相似文献   
93.
Scientists need to find innovative ways to communicate their findings with restoration practitioners in an era of global change. Apps are a promising bridge between restoration science and practice because they apply broad scientific concepts to specific situations. For example, habitat connectivity promotes ecological function, but practitioners lack ways to incorporate connectivity into decision‐making. We created an app where users calculate how habitat restoration or loss affects connectivity. By providing our app as an example and discussing the benefits and challenges in creating apps for practitioners, we encourage other restoration ecologists to similarly create apps that bridge science with practice.  相似文献   
94.
Almost all spiders building vertical orb webs face downwards when sitting on the hubs of their webs, and their webs exhibit an up–down size asymmetry, with the lower part of the capture area being larger than the upper. However, spiders of the genus Cyclosa, which all build vertical orb webs, exhibit inter- and intraspecific variation in orientation. In particular, Cyclosa ginnaga and C. argenteoalba always face upwards, and C. octotuberculata always face downwards, whereas some C. confusa face upwards and others face downwards or even sideways. These spiders provide a unique opportunity to examine why most spiders face downwards and have asymmetrical webs. We found that upward-facing spiders had upside-down webs with larger upper parts, downward-facing spiders had normal webs with larger lower parts and sideways-facing spiders had more symmetrical webs. Downward-facing C. confusa spiders were larger than upward- and sideways-facing individuals. We also found that during prey attacks, downward-facing spiders ran significantly faster downwards than upwards, which was not the case in upward-facing spiders. These results suggest that the spider''s orientation at the hub and web asymmetry enhance its foraging efficiency by minimizing the time to reach prey trapped in the web.  相似文献   
95.
Many human influences on the world's ecosystems have their largest direct impacts at either the top or the bottom of the food web. To predict their ecosystem-wide consequences we must understand how these impacts propagate. A long-standing, but so far elusive, problem in this endeavour is how to reduce food web complexity to a mathematically tractable, but empirically relevant system. Simplification to main energy channels linking primary producers to top consumers has been recently advocated. Following this approach, we propose a general framework for the analysis of bottom-up and top-down forcing of ecosystems by reducing food webs to two energy pathways originating from a limiting resource shared by competing guilds of primary producers (e.g. edible vs. defended plants). Exploring dynamical models of such webs we find that their equilibrium responses to nutrient enrichment and top consumer harvesting are determined by only two easily measurable topological properties: the lengths of the component food chains (odd-odd, odd-even, or even-even) and presence vs. absence of a generalist top consumer reconnecting the two pathways (yielding looped vs. branched webs). Many results generalise to other looped or branched web structures and the model can be easily adapted to include a detrital pathway.  相似文献   
96.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   
97.
At the global scale, species diversity is known to strongly increase towards the equator for most taxa. According to theory, a higher resource specificity of consumers facilitates the coexistence of a larger number of species and has been suggested as an explanation for the latitudinal diversity gradient. However, only few studies support the predicted increase in specialisation or even showed opposite results. Surprisingly, analyses for detritivores are still missing. Therefore, we performed an analysis on the degree of trophic specialisation of dung beetles. We summarised 45 studies, covering the resource preferences of a total of 994503 individuals, to calculate the dung specificity in each study region. Our results highlighted a significant (4.3‐fold) increase in the diversity of beetles attracted to vertebrate dung towards the equator. However, their resource specificity was low, unrelated to diversity and revealed a highly generalistic use of dung resources that remained similar along the latitudinal gradient.  相似文献   
98.
Several studies have identified the tendency for species to share interacting partners as a key property to the functioning and stability of ecological networks. However, assessing this pattern has proved challenging in several regards, such as finding proper metrics to assess node overlap (sharing), and using robust null modeling to disentangle significance from randomness. Here, we bring attention to an additional, largely neglected challenge in assessing species’ tendency to share interacting partners. In particular, we discuss and illustrate with two different case studies how identifying the set of “permitted” interactions for a given species (i.e. interactions that are not impeded, e.g. by lack of functional trait compatibility) is paramount to understand the ecological and co‐evolutionary processes at the basis of node overlap and segregation patterns.  相似文献   
99.
100.
The evolutionary patterns of animal species clades in an evolving food web system were examined by computer simulation. In this system, each animal species fed on other species according to feeding preference. The food web system evolved via the appearance and extinction of species. The model succeeded in reproducing evolutionary patterns of diversity similar to those seen in the fossil record. This result indicates that the model reproduced the temporal changes of the rates of colonization and extinction of species in the system, which have been decided a priori in the previous stochastic models. In the food web system, the numbers of both predatory and prey species influenced the temporal diversity patterns in each clade in the system. The number of prey species fluctuated strongly, whereas the number of predatory species gradually increased with time. Therefore, temporal diversity patterns were influenced mainly by the number of predatory species. As a result of the gradual increase of the number of predatory species, it was difficult for each clade to maintain its species diversity for a long time. Slight changes of interspecific interaction can sometimes decide the destiny of a clade. When a clade is faced with extinction, if one predatory species of the clade becomes extinct and one or two prey species of the clade appear, the species diversity in the clade increases again. This result indicates that slight changes of interspecific interaction sometimes decide the destiny of a clade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号