首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   2篇
  国内免费   2篇
  2023年   2篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   8篇
  2013年   4篇
  2012年   14篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
81.
Currently, 13 subfamilies are recognised in the brachyuran family Xanthidae: Actaeinae, Antrocarcininae, Chlorodiellinae, Cymoinae, Etisinae, Euxanthinae, Kraussiinae, Liomerinae, Polydectinae, Speocarcininae, Xanthinae, Zalasiinae and Zosiminae. This classification has been based on shared adult features like a transversely ovate carapace, well defined dorsal carapace regions, usually with lateral dentition, stout chelipeds and relatively short ambulatory legs. Such characters are now considered to be convergent. Consequently a number of higher xanthid taxa may be artifical and not monophyletic. A broad sample of 147 xanthid species representing 75 out of 124 genera from all 13 xanthid subfamilies were sampled in a multi-gene analysis. Four markers (three mitochondrial and one nuclear) were used and yielded a tree with ca. 30 xanthid clades. Monophyletic support was demonstrated for the Antrocarcininae (although substantially redefined), Cymoinae, and Polydectinae. Almost every other subfamily was para- or polyphyletic. Furthermore, the two other families of the Xanthoidea, Pseudorhombilidae and Panopeidae, were found nested within the Xanthidae. The molecular results were consistent with phylogenetic relationships implied by a suite of novel and/or neglected “ventral” adult characters including sternal characters, position of genital openings and morphology of the first zoea, instead of “dorsal” characters traditionally used to infer xanthid relationships.  相似文献   
82.
83.
The intentional use by terrorists of biological toxins as weapons has been of great concern for many years. Among the numerous toxins produced by plants, animals, algae, fungi, and bacteria, ricin is one of the most scrutinized by the media because it has already been used in biocrimes and acts of bioterrorism. Improving the analytical toolbox of national authorities to monitor these potential bioweapons all at once is of the utmost interest. MS/MS allows their absolute quantitation and exhibits advantageous sensitivity, discriminative power, multiplexing possibilities, and speed. In this issue of Proteomics, Gilquin et al. (Proteomics 2017, 17, 1600357) present a robust multiplex assay to quantify a set of eight toxins in the presence of a complex food matrix. This MS/MS reference method is based on scheduled SRM and high‐quality standards consisting of isotopically labeled versions of these toxins. Their results demonstrate robust reliability based on rather loose scheduling of SRM transitions and good sensitivity for the eight toxins, lower than their oral median lethal doses. In the face of an increased threat from terrorism, relevant reference assays based on advanced proteomics and high‐quality companion toxin standards are reliable and firm answers.  相似文献   
84.
The use of extreme discordant sib pairs (EDSP) or extreme concordant sib pairs (ECSP) has recently been proposed to increase power for mapping quantitative traits in humans (RISCH and ZHANG, 1995, 1996). In this paper we propose a test statistic to jointly analyze EDSP and ECSP based on a clinical sampling procedure. This test statistic does not fulfill any optimality criteria. However, this approach is useful for quantitative traits of clinical significance for which EDSP are rare and/or expensive to ascertain. We show how sample size calculations can be adjusted for recombination using single markers, multipoint analysis, incompletely polymorphic markers and varying proportions of ECSP. If the true genetic model is unknown, the combined approach appears to be more robust than sampling based on only EDSP or only ECSP. We discuss how to find the optimal proportion of EDSP and ECSP to be included in an analysis under power considerations.  相似文献   
85.
A liquid chromatography (LC)/electrospray ionization (ESI)-mass spectrometry (MS) method for the direct determination of eighteen tetrahydrocorticosteroid sulfates in human urine has been developed. The analytes were 3- and 21-monosulfates and 3,21-disulfates of tetrahydrocortisol (THF), tetrahydrocortisone (THE), tetrahydro-11-deoxycortisol (THS), and their corresponding 5α-H stereoisomers. The mass spectrometric behavior of these sulfates in negative-ion ESI-MS/MS revealed the production of intense structure specific product ions within the same group of sulfates and permitted distinction between regioisomeric sulfates by collision-induced fragmentation with the MS/MS technique using a linear ion-trap instrument. For the quantitative analysis, selected reaction monitoring analysis in the negative-ion detection mode using triple-stage quadrupole mass spectrometer was performed by monitoring transitions from [M−H] to the most abundant product ion of each tetrahydrocorticosteroid sulfate. After addition of 3- and 21-monosulfates of [2,2,3β,4,4-d5]-THF, -THE, and -THS as internal standards, urine sample was applied to a solid phase extraction using a lipophilic-weak anion exchange cartridge column, and then analyzed by LC/ESI-MS/MS. The method had satisfactory performance in terms of intra- and inter-assay precision (less than 9.7% and 9.6%, respectively), and accuracy (91.2–108.2%). The limit of quantification was lower than 2.5 ng/mL for all sulfates examined. We applied this method to determine the concentration of eighteen tetrahydrocorticosteroid sulfates in the urine of healthy subjects. Thus, we have developed a sensitive, precise and accurate assay for urinary tetrahydrocorticosteroid sulfates that should be useful for clinical and biological studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号