首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   33篇
  国内免费   152篇
  2024年   2篇
  2023年   13篇
  2022年   4篇
  2021年   12篇
  2020年   19篇
  2019年   12篇
  2018年   18篇
  2017年   24篇
  2016年   22篇
  2015年   19篇
  2014年   17篇
  2013年   42篇
  2012年   20篇
  2011年   21篇
  2010年   15篇
  2009年   30篇
  2008年   28篇
  2007年   37篇
  2006年   45篇
  2005年   42篇
  2004年   20篇
  2003年   24篇
  2002年   42篇
  2001年   13篇
  2000年   17篇
  1999年   16篇
  1998年   6篇
  1997年   10篇
  1996年   6篇
  1995年   22篇
  1994年   37篇
  1993年   22篇
  1992年   14篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   8篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
排序方式: 共有751条查询结果,搜索用时 255 毫秒
11.
Hummel  Herman  Fortuin  Anne W.  Bogaards  Roelof H.  Meijboom  Andre  de Wolf  Lein 《Hydrobiologia》1994,282(1):219-234
Effects of tidal manipulation, resulting in prolonged periods of emersion and submersion or in protracted tidal cycles, on estuarine benthic animals are reviewed.Prolonged submersion periods did not show effects on mortality of most benthic animals tested, with the exception of the crumb-of-bread sponge Halichondrea panicea, which, at low water-flow rates, was covered with a layer of bacteria and subsequently died.Protracted low-water periods of 18 hours during several weeks hardly caused any mortality. However, protracted low-water periods of 30 hours during some weeks or emersion during several days caused a strong increase in mortality, depending on: the duration of emersion, temperature, condition of the animals, species and age. At temperatures below –1 °C and above 24 °C mortality was generally high. Animals with a low glycogen content were more sensitive to emersion than those with a high content. Species with a shell and those that are relatively big were less sensitive than those without a shell or of small size.The reproductive cycle of benthic animals could be delayed or accelerated by both emersion and submersion.  相似文献   
12.
Stable isotopic structure of aquatic ecosystems   总被引:1,自引:0,他引:1  
Isotopic, biogeochemical and ecological structure can provide a new dimension for understanding material flows, and the simultaneous function and structure of an ecosystem. Distributions ofδ 13C andδ 15N for biogenic substances in the Nanakita river estuary involving Gamo lagoon in Japan were investigated to construct isotope biogeochemical and ecological structure for assessing fate and transfer of organic matter, and food web structure. The isotopic framework of the ecosystem was successfully described in aδ 15N–δ 13C map. In this estuary the variations of isotope ratios of biogenic substances were clearly explained by the mixing of land-derived organic matter, and marine-derived organic matter. A trophic-level effect of15N enrichment was clearly observed. Organisms were classified into three groups depending upon the contribution of land-derived organic matter in a food chain. Almost all biota except mollusca in the lagoon depend on organic matter of marine origin. The contributions of both land and marine organic matter were comparable for mollusca in the lagoon.  相似文献   
13.
Monthly trends shown by gonadosomatic indices, the prevalence of the different gonadal stages, and the size distribution of the oocytes, indicate that the large marine and commercially important plotosid Cnidoglanis macrocephalus spawns in Wilson Inlet between October and January. The conclusion that spawning occurs within this seasonally closed estuary was confirmed by the presence of males in large nests and by the capture of newly-hatched, yolk sac larvae from one of those nests. The fact that C. macrocephalus, which is also widely distributed in coastal marine waters throughout much of southern Australia, can spawn within Wilson Inlet would be of particular value to this species in those periods when closure of the estuary would preclude a seawards spawning migration. Sexual maturity is size dependent, with spawning rarely occurring before fish have reached a total length of 425 mm. Sexual maturity was attained by a few fish at the end of their second year, by several at the end of their third year and by most, if not all fish, at the end of their fourth year. Comparisons with data for the more northern and permanently open Swan Estuary indicate that C. macrocephalus also spawns within that system and that the spawning time of this species is related to water temperature. The adult male guards the larvae under its pelvic fins in burrows. The larvae increased in total length from 29 mm just after hatching to 43 mm in the 17–18 days after capture, during which time their yolk sac was resorbed. Details are given of the morphology, morphometrics, meristics and pigmentation of larval C. macrocephalus. In comparison with the larvae of three other plotosid genera, the larva of C. macrocephalus is far larger in size and more developed at hatching and takes a shorter time to transform into a juvenile.  相似文献   
14.
In the Ems estuary the gradients in dissolved phosphorus and iron are non-conservative and opposite. The relations between different mineral compounds, environmental conditions and phosphate concentrations were studied, in an attempt to explain this. Laboratory experiments on water samples from the reaches with high concentrations of phosphate and of suspended matter revealed a low concentration of calcite-bound phosphorus in the middle reaches of the estuary (only 0.07%). Therefore, it is concluded that calcite possibly plays only a modest role in phosphate distribution in the Ems estuary. Further experiments revealed that nearly 70% of the particulate inorganic phosphorus is iron-bound. It is demonstrated that organic coatings on minerals inhibit phosphate release at a low redox potential. Moreover, the organic matter itself contained c. 20% of particulate phosphorus. Approximately 10% of the particulate phosphorus may be associated with clay minerals. It is concluded that in addition to biological processes, the phosphorus associated with ironoxyhydroxides may be crucial for the seasonal variation of the phosphate concentrations in the water.  相似文献   
15.
This study was designed to understand the high variability characterizing primary production rates of microphytobenthos. The photosynthetic efficiency (αB) and photosynthetic capacity (PBmax) of the microphytobenthos were measured at different times of the day on two different dates (8 May and 7 July 1990). In July, unusually low light conditions were caused by the development of a brown tide (chrysophytes). Both light-limited and light-saturated photosynthesis changed at hourly and monthly scales. There was a linear relationship between αB and PBmax, suggesting a common response to environmental factors [αB= 0.0075(±0.00063)·PBmax+ 0.00097(±0.0071), R2= 0.94]. Incident irradiance at the sediment-water interface was the primary physical factor that explained variability of both αB (84%) and PBmax (92%). Temperature had a negative but minor effect that explained an extra 8% and 2% of the variance, respectively. There was no diel rhythm of αB and PBmax and incident irradiance was regulated by wind-induced currents. Therefore, microphytobenthos photosynthesis seemed to be primarily controlled by wind events in Baffin Bay.  相似文献   
16.
The residence time of the water masses in the Westerschelde estuary was determined using a simple compartment-model that simulates the advective-diffusive transport of a conservative dissolved substance (chlorinity). The residence time of a water parcel in the upstream part of the estuary (i.e. the time needed for this water parcel to leave the estuary) varied from about 50 days in winter to about 70 days in summer. The most seaward compartment had residence times of about 10-15 days.Dispersive coefficients that are fixed in time were able to reproduce the observed salinity distributions very well in the Westerschelde. They were obtained by calibration on observed chlorinities. It is argued that the apparent relationship of dispersive coefficients with freshwater flow, which is observed in certain studies, could (partly) reflect the deviation from steady state conditions which are required assumptions to calculate these dispersive coefficients directly from salinity profiles.  相似文献   
17.
Meiofauna from the intertidal zone of five European estuaries (Ems, Westerschelde, Somme, Gironde, Tagus) was investigated. Samples represented a cross section of various benthic habitats from near-freshwater to marine, from pure silts to fine-sandy bottoms. The meiobenthic community comprised everywhere a fauna strongly dominated by nematodes, with meiobenthic density increasing with increasing salinity. The Ems differed from the other estuaries due to the presence of a well developed community of Copepods, Gastrotrichs, large Ciliates and/or soft-shelled Foraminiferans in some sites. The Westerschelde stood out due to the near-absence of harpacticoid copepods and, as in the Tagus, the lower meiobenthic densities in the marine part of the estuary. For nematode community analysis, we also included data from the Tamar which were obtained from the literature (Warwick &; Gee, 1984). This resulted in the enumeration of 220 species, belonging to 102 genera, each with a characteristic distribution along the salinity, sedimentary and latitudinal gradients. Using the multivariate technique CANOCO, a zonation along these different physicochemical determinants was observed as well although salinity and sediment characteristic (scale of hundreds of meters to kilometers) proved to be more important in explaining community structure than latitudinal differences (scale of hundreds of kilometers). Nematode diversity was nearly entirely determined on the genus level and was positively related to salinity. Deviations from this general trend in the Gironde and the Tamar were attributed to sedimentary characteristics or to low macrobenthic predation. The presence of a typical opportunistic colonizing nematode species Pareurodiplogaster pararmatus in the low-salinity region of the Gironde could indicate (organic?) pollution or disturbance of the intertidal mud-flats.  相似文献   
18.
The autotrophic production and heterotrophic consumption of organic matter in the Westerschelde, a highly turbid and eutrophic estuary in the Southwest Netherlands is examined by means of a dynamic simulation model. The model describes the ecologically relevant processes in thirteen spatial compartments and adequately fits most observed data.Three autotrophic processes are included in the model. Net pelagic photosynthetic production is relatively low (average 41 gC m–2 yr–1) and three spatial compartments near the turbidity maximum zone are respiratory sinks of phytoplankton biomass. According to the model, net phytobenthic primary production is more important than pelagic primary production in the upstream half of the Westerschelde. On the scale of the entire estuary, benthic primary production amounts to about 60% of pelagic primary production. Water-column nitrification, which is very important in the nitrogen cycle, is most pronounced near the turbidity zone where it accounts for the major autotrophic fixation of carbon (up to 27 g C m–2 yr–1). Viewed on the scale of the total estuary, however, the process is not very important.Less than 20% of total organic carbon input to the estuary is primary produced, the remainder is imported from waste discharges and from the river.The degree of heterotrophy of the Westerschelde estuary proved to be one of the highest yet reported. On average 380 g carbon per square metre is net lost per year (range 200–1200 gC m–2 yr–1). The yearly community respiration (bacterial mineralization, respiration of higher trophic levels and sedimentation) is 4 to 35 times (estuarine mean of 6) higher than the net production. This degree of heterotrophy is highest near the turbidity maximum and generally decreases from the freshwater to the seaward boundary. About 75% of all carbon losses can be ascribed to pelagic heterotrophic processes; the sediment is only locally important.Mineralisation rates are highest in the turbidity region, but as only a fraction of total carbon resides here, less than 20% of all organic carbon is lost in this part of the estuary. This result is in contradiction with a previous budget of the estuary, based on data of the early seventies, where more than 80% of all carbon was estimated to be lost in the turbidity zone. Part of this discrepancy is probably caused by changes that have occurred in the estuary since that time.Due to the high heterotrophic activity, nearly all imported and in situ produced carbon is lost in the estuary itself and the Westerschelde is an insignificant source of organic matter to the coastal zone.The model estuary acts as a trap for reactive organic matter, both from the land, from the sea or in situ produced. Internal cycling, mainly in the water column, results in the removal of most of the carbon while the more refractory part is exported to the sea.  相似文献   
19.
Andrea Peitsch 《Hydrobiologia》1995,311(1-3):127-137
Production rates of the calanoid copepod Eurytemora affinis were estimated from field studies in the Elbe estuary and from an enclosure experiment. As one basic parameter of production rates, the body length, was compared between both investigations. Most of the copepodid stages in the enclosure experiment reached a significant greater length than the copepodids in the estuary. The differences in length between copepods from the field and the experiment could mainly be explained by a four times higher chlorophyll-a level in the enclosure experiment. The better food supply also results in a higher individual growth rate for all instars in the enclosure experiment. Therefore the population of Eurytemora affinis in the Elbe estuary was regarded as food limited during certain times of the year, especially in late spring and summer.Maximum daily production rate in the enclosure experiment (40 µg dw l–1 d–1) was four times higher than in the estuary (12 µg dw l–1 d–1). The mean daily P:B ratio in the enclosure was 0.301 d–1 compared to 0.11 d–1 in the estuary.  相似文献   
20.
Polat  S. C.  Tuğrul  S.  Çoban  Y.  Basturk  O.  Salihoglu  I. 《Hydrobiologia》1997,366(1-3):157-167
The Sea of Marmara, an intercontinental basin with shallow and narrowstraits, connects the Black and Mediterranean Seas. Data obtained during1991–1996 have permitted the determination of the elementalcomposition of seston in the euphotic zone and the N:P ratio of thesubhalocline waters of the Marmara Sea. Since primary production is alwayslimited to the less saline upper layer (15–20 m), of the Marmara Sea,the subhalocline waters of Mediteranean origin are always rich in nutrients(NO3 + NO2 = 8–10 μm, PO4 = 0.8–1.2 μm) but depleted in dissolvedoxygen (30–50 μm) throughout the basin, yielding an -O_2 : N : P ratio of 178 : 9 : 1. Pollution of the surfacewaters since the 60s has modified the subhalocline nutrient chemistryslightly. In the euphotic zone, the N : P ratio of the seston changes from5.9 to 9.5 between the less and more productive periods. Though the biologyof the Marmara has changed significantly during the previous two decades,the close relationship observed between the elemental composition of thesurface seston and the NO3 : PO4 ratio of thesubhalocline waters strongly suggests that during the whole year primaryproduction throughout the basin and POM export to the lower layer remainnitrogen-limited. This suggestion needs to be confirmed by bio-assays,biological studies and sediment trap data from the upper subhaloclinedepths. Nonetheless, the counterflows in the Marmara basin possessrelatively low N : P ratios in both dissolved and particulate nutrients andextend as far as the adjacent seas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号