首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5668篇
  免费   593篇
  国内免费   833篇
  2024年   19篇
  2023年   99篇
  2022年   122篇
  2021年   173篇
  2020年   188篇
  2019年   200篇
  2018年   178篇
  2017年   202篇
  2016年   198篇
  2015年   239篇
  2014年   244篇
  2013年   264篇
  2012年   216篇
  2011年   265篇
  2010年   172篇
  2009年   308篇
  2008年   354篇
  2007年   354篇
  2006年   338篇
  2005年   299篇
  2004年   253篇
  2003年   233篇
  2002年   213篇
  2001年   165篇
  2000年   185篇
  1999年   168篇
  1998年   175篇
  1997年   121篇
  1996年   125篇
  1995年   120篇
  1994年   85篇
  1993年   113篇
  1992年   104篇
  1991年   82篇
  1990年   72篇
  1989年   67篇
  1988年   62篇
  1987年   60篇
  1986年   50篇
  1985年   42篇
  1984年   29篇
  1983年   14篇
  1982年   30篇
  1981年   14篇
  1980年   30篇
  1979年   14篇
  1978年   17篇
  1977年   10篇
  1975年   3篇
  1958年   2篇
排序方式: 共有7094条查询结果,搜索用时 109 毫秒
91.
Summary The seeds in fruits consumed by primates may be chewed and digested, swallowed and defecated intact, or separated from the flesh and spat out. We show by a combination of close field observations and experiments with caged animals, that long-tailed macaques (Macaca fascicularis) have a remarkably low threshold of 3–4 mm for swallowing seeds and also that wild macaques rarely break them. The seeds of 69% of the ripe fruit species eaten are spat out intact or cleaned outside the mouth and dropped. Seed-spitting significantly reduces the swallowed food bulk and may lessen the risk of releasing seed toxins during mastication. However, it requires that even small fruits are processed in the mouth one or a few at a time. We suggest that fruit storage in the cheek pouches of cercopithecine monkeys allows them to spit seeds individually without excessively slowing fruit intake while feeding on patchily distributed fruit. In contrast, Apes and New World monkeys apparently swallow and defecate most ripe seeds in their diet and colobine monkeys break and digest them, detoxifying seed defenses by bacterial fermentation.  相似文献   
92.
The low ethylene yield in a cell-free ethylene-forming system from olive tree leaves ( Olea europaea L. cv. Picual) was investigated. During the incubation, 1-aminocyclopropane-1-carboxylic acid (ACC) was extensively transformed into 3-hydroxypropyl amide (HPA). Enzyme extract, Mn2+ and oxygen are responsible for this reaction. Horseradish peroxidase (EC 1.11.1.7) can substitute for the enzyme extract in this reaction. HPA formation could be one reason for the poor in vitro conversion efficiency of ACC to ethylene.  相似文献   
93.
The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen <old intact< fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.  相似文献   
94.
Gisela Mäck  Rudolf Tischner 《Planta》1990,182(2):169-173
The pericarp of the dormant sugarbeet fruit acts as a storage reservoir for nitrate, ammonium and -amino-N. These N-reserves enable an autonomous development of the seedling for 8–10 d after imbibition. The nitrate content of the seed (1% of the whole fruit) probably induces nitrate-reductase activity in the embryo enclosed in the pericarp. Nitrate that leaks out of the pericarp is reabsorbed by the emerging radicle. Seedlings germinated from seeds (pericarp was removed) without external N-supply are able to take up nitrate immediately upon exposure via a low-capacity uptake system (vmax = 0.8 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.12 mM). We assume that this uptake system is induced by the seed nitrate (10 nmol/seed) during germination. Induction of a high-capacity nitrate-uptake system (vmax = 3.4 mol NO 3 - ·(g root FW)–1·h–1; Ks = 0.08 mM) by externally supplied nitrate occurs after a 20-min lag and requires protein synthesis. Seedlings germinated from whole fruits absorb nitrate via a highcapacity uptake mechanism induced by the pericarp nitrate (748 nmol/pericarp) during germination. The uptake rates of the high-capacity system depend only on the actual nitrate concentration of the uptake medium and not on prior nitrate pretreatments. Nitrate deprivation results in a decline of the nitrate-uptake capacity (t1/2 of vmax = 5 d) probably caused by the decay of carrier molecules. Small differences in Ks but significant differences in vmax indicate that the low- and high-capacity nitrate-uptake systems differ only in the number of identical carrier molecules.Abbreviations NR nitrate reductase - pFPA para-fluorophenylalanine This work was supported by a grant from Bundesministerium für Forschung und Technologie and by Kleinwanzlebener Saatzucht AG, Einbeck.  相似文献   
95.
Inorganic-N concentrations in soil solution of whole tree harvest (WTH) and conventional fell (CF) plots were monitored for two years before felling and four years after felling. Concentrations in the mineral soil after felling were higher than in standing forest for up to 14 months in both felling treatments. In the WTH plots inorganic-N concentrations then dropped steadily until four years after felling they approached zero. In contrast, inorganic-N concentrations of the CF plots remained comparatively large. Inorganic-N was dominated by nitrate throughout the period of the study, and especially in the mineral horizons.Felling debris was not a source of inorganic-N, unless indirectly through release and mineralisation of soluble organic-N. Vegetation cover, biomass and N content were substantially greater in the WTH plots two to three years after felling, compared with the CF. Vegetation cover and brash cover (slash cover in N. America) were negatively correlated. There was also a negative correlation between inorganic-N concentration in soil water samplers and the vegetation cover within the collection area of, or a 1 m square surrounding, these samplers.Two factors are probably responsible for the reduction in inorganic-N concentrations after felling in the WTH — the rapid re-establishment of vegetation and the lack of a N source in felling debris. In the CF plots, brash prevents re-establishment of vegetation over wide areas for at least four years. However, brash is not directly a source of inorganic-N at this stage.  相似文献   
96.
一类阔叶树叶面积的通用公式测算法   总被引:2,自引:0,他引:2  
本文在观察和测算的基础上,提出了一类阔叶树的叶形方程,并对方程进行积分,求出了计算这类阔叶树叶面积的通用公式。从1980年应用至今证明,用这个通用公式计算这类阔叶树的面积,方便、简捷、精度高,现介绍如下。  相似文献   
97.
Abstract. We compare the dispersal spectra of diaspores from varied plant communities in Australia, New Zealand, and North America, assigning dispersal mode to each diaspore type on the basis of apparent morphological adaptations. Species with ballistic and external dispersal modes were uncommon in most communities we surveyed. Ant dispersal was also rather uncommon, except in some Australian sclerophyll vegetation types. The frequency of vertebrate dispersal ranged up to 60% of the flora, the highest frequencies occurring in New Zealand forests. Wind dispersal ranged as high as 70% of the flora, with the highest values in Alaska, but usually comprised 10–30% of the flora. Many species in most communities had diaspores with no special morphological device for dispersal. Physiognomically similar vegetation types indifferentbiogeographic regions usually had somewhat dissimilar dispersal spectra. The frequency of dispersal by vertebrates often increased and the frequency of species with no special dispersal device decreased along gradients of increasing vertical diversity of vegetation structure. Elevation and moisture gradients also exhibited shifts in dispersal spectra. Within Australia, vertebrate- and wind-dispersal increased in frequency along a soil-fertility gradient, and dispersal by ants and by no special device decreased. Habitat breadths (across plant communities) and microhabitat breadths (within communities) for species of each major dispersal type did not show consistent differences, in general. Ant-dispersed species often had lower cover-values than other species in several Australian vegetation types. We discuss the ecological bases of these differences in dispersal spectra in terms of the availability of dispersal agents, seed size, and other ecological constraints. Seed size is suggested to be one ecological factor that is probably of general relevance to the evolution of dispersal syndromes.  相似文献   
98.
前文由柑桔枝条在不同低温下、不同冷冻时间的电解质外渗测定,提出胁强(stress)、作用时间与胁变(strain)之间关系的数学模型。在这个模型中共有3个参数:屈服点温度(yield point temperature),胁强敏感度(stress sensitivity)和作用时间敏感度(sensitivity to duration),用以描述植物的抗性。抗性强的植物应表现为屈服点温度较低,胁强敏感度或者时间敏感度较低。为验证此数学模型,本工作以经冷锻炼与未经冷锻炼的盆栽柑桔枝条为材料,作不同温度与时间处理的电解质外渗率的测定,研究了冷锻炼对于上述3个参数的影响。发现胁强敏感度和屈服点温度受冷锻炼影响而下降,时间敏感度未表现明显变化。对于田间柑桔、油桐与毛竹的定期测定,在固定冷冻时间下,得到了类似于盆栽柑桔的结果。入冬时,植物抗冻性提高,3种植物都表现出下列两种变化:1.胁强敏感度的明显下降;2.屈服点温度和/或时间敏感度亦下降。开春时的变化则相反。胁强敏感度的变化与后一种变化有各自的规律,且因植物种类而不同。拐点胁强(stress at inflection point)具有与半致死温度(50%killing point temperature)不同的意义,它的变化是上述两种变化的综合结果。本试验结果表明,冷锻炼对于植物胁强敏感度有明显影响,用本数学模型的3个抗性指标描述  相似文献   
99.
Molecular phylogenetic analyses using mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences representing all 15 species and the majority of subspecies or races of theOhomopterus ground beetles from all over the Japanese archipelago have uncovered a remarkable evolutionary history. Clustering of the species in the molecular phylogenetic tree is linked to their geographic distribution and does not correlate with morphological characters. Taxonomically the same species or the members belonging to the same species-group fall out in more than two different places on the ND5 tree. Evidence has been presented against a possible participation of ancestral polymorphism and random lineage sorting or of hybrid individuals for the observed distribution of mitochondrial DNA haplotypes. The most plausible explanation of our results is that parallel evolution took place in different lineages. Most notably,O. dehaanii, O. yaconinus, andO. japonicus in a lineage reveal almost identical morphology with those of the same species (or subspecies) but belonging to the phylogenetically remote lineages.The nucleotide sequence data reported in this paper will appear in the DDBJ, EMBL, and GenBank nucleotide sequence databases with accession numbers D50711-DD-50733 and D87131-D87186.  相似文献   
100.
We compared above-ground allocation patterns in mature shrubs of Banksia hookeriana from three 13-year-old populations, growing on nutrient-impoverished sands to determine whether C (dry mass) could be a substitute for mineral nutrients (N, P, K, Ca, Mg and NA). The percentage of reproductive structures to total above-ground growth (reproductive effort; RE) was integrated over nine successive reproductive cycles. Only 0.5% of above-ground dry mass was allocated to seeds compared with 31% to total RE. Allocations of N (24%) and P (48%) to seeds, and N (44%) and P (65%) to RE were much higher. Allocations of K, Ca, Mg and Na to seeds (<1–3%), and RE (21–35%) were closer to that of dry mass. Relative allocation (RA) is defined as the proportion of a nutrient element allocated to a structure relative to its dry mass. RA of P to seeds was 91 and N was 44, but for K, Ca, Mg and Na ranged from only 6 for K to<1 for Na. Thus P, and to a lesser extent N, provide a much more sensitive measure of the relative cost of reproduction than C in this nutrient-limited system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号