首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   135篇
  国内免费   102篇
  1908篇
  2024年   7篇
  2023年   32篇
  2022年   46篇
  2021年   55篇
  2020年   67篇
  2019年   89篇
  2018年   102篇
  2017年   63篇
  2016年   51篇
  2015年   71篇
  2014年   138篇
  2013年   134篇
  2012年   74篇
  2011年   109篇
  2010年   83篇
  2009年   98篇
  2008年   94篇
  2007年   95篇
  2006年   73篇
  2005年   72篇
  2004年   57篇
  2003年   57篇
  2002年   35篇
  2001年   17篇
  2000年   26篇
  1999年   25篇
  1998年   27篇
  1997年   11篇
  1996年   21篇
  1995年   15篇
  1994年   6篇
  1993年   4篇
  1992年   6篇
  1991年   1篇
  1990年   8篇
  1989年   7篇
  1988年   2篇
  1987年   6篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有1908条查询结果,搜索用时 11 毫秒
91.
Acute kidney injury (AKI) is a high frequent and common complication following acute myocardial infarction (AMI). This study examined and identified the effect of AMI-induced AKI on organic anion transporter 1 (Oat1) and Oat3 transport using clinical setting of pre-renal AKI in vivo. Cardiac ischaemia (CI) and cardiac ischaemia and reperfusion (CIR) were induced in rats by 30-min left anterior descending coronary artery occlusion and 30-min occlusion followed by 120-min reperfusion, respectively. Renal hemodynamic parameters, mitochondrial function and Oat1/Oat3 expression and function were determined along with biochemical markers. Results showed that CI markedly reduced renal blood flow and pressure by approximately 40%, while these parameters were recovered during reperfusion. CI and CIR progressively attenuated renal function and induced oxidative stress by increasing plasma BUN, creatinine and malondialdehyde levels. Correspondingly, SOD, GPx, CAT mRNAs were decreased, while TNFα, IL1β, COX2, iNOS, NOX2, NOX4, and xanthine oxidase were increased. Mitochondrial dysfunction as indicated by increasing ROS, membrane depolarisation, swelling and caspase3 activation were shown. Early significant detection of AKI; KIM1, IL18, was found. All of which deteriorated para-aminohippurate transport by down-regulating Oat1 during sudden ischaemia. This consequent blunted the trafficking rate of Oat1/Oat3 transport via down-regulating PKCζ/Akt and up-regulating PKCα/NFκB during CI and CIR. Thus, this promising study indicates that CI and CIR abruptly impaired renal Oat1 and regulatory proteins of Oat1/Oat3, which supports dysregulation of remote sensing and signalling and inter-organ/organismal communication. Oat1, therefore, could potentially worsen AKI and might be a potential therapeutic target for early reversal of such injury.  相似文献   
92.
While a number of studies have documented the importance of microglia in central nervous system (CNS) response to injury, infection and in disease state, little is known regarding how the neuronal death initiates the cascades of secondary neuroinflammation. We have exploited an experimental model of Japanese encephalitis to better understand how neuronal death following viral infection initiates microglial activation following Japanese encephalitis virus infection. We have earlier shown that the altered expression of tumor necrosis factor receptor-1 (TNFR-1) and TNFR associated death domain (TRADD) following Japanese encephalitis virus infection regulates the downstream apoptotic cascades. Here we have reported that silencing TRADD expression with small-interfering RNA reduced neuronal apoptosis and subsequent microglial and astroglial activation and release of various pro-inflammatory mediators. Our findings suggest that the engagement of TNFR-1 and TRADD following Japanese encephalitis virus infection plays a crucial role in glial activation also and influences the outcome of viral pathogenesis.  相似文献   
93.
94.
Circulating soluble adhesion molecules have been suggested as useful markers to predict several clinical conditions such as atherosclerosis, type 2 diabetes, obesity, and hypertension. To determine genetic factors influencing plasma levels of soluble vascular cell adhesion molecule-1 (VCAM-1) and P-selectin, quantitative trait locus (QTL) analysis was performed on an intercross between C57BL/6J (B6) and C3H/HeJ (C3H) mouse strains deficient in apolipoprotein E-deficient (apoE−/−). Female F2 mice were fed a western diet for 12 weeks. One significant QTL, named sVcam1 (71 cM, LOD 3.9), on chromosome 9 and three suggestive QTLs on chromosomes 5, 13 and 15 were identified to affect soluble VCAM-1 levels. Soluble P-selectin levels were controlled by one significant QTL, named sSelp1 (8.5 cM, LOD 3.4), on chromosome 16 and two suggestive QTLs on chromosomes 10 and 13. Both adhesion molecules showed significant or an apparent trend of correlations with body weight, total cholesterol, and LDL/VLDL cholesterol levels in the F2 population. These results indicate that plasma VCAM-1 and P-selectin levels are complex traits regulated by multiple genes, and this regulation is conferred, at least partially, by acting on body weight and lipid metabolism in hyperlipidemic apoE−/− mice. Zuobiao Yuan and Zhiguang Su contributed equally.  相似文献   
95.
Combining single molecule atomic force microscopy (AFM) and protein engineering techniques, here we demonstrate that we can use recombination-based techniques to engineer novel elastomeric proteins by recombining protein fragments from structurally homologous parent proteins. Using I27 and I32 domains from the muscle protein titin as parent template proteins, we systematically shuffled the secondary structural elements of the two parent proteins and engineered 13 hybrid daughter proteins. Although I27 and I32 are highly homologous, and homology modeling predicted that the hybrid daughter proteins fold into structures that are similar to that of parent protein, we found that only eight of the 13 daughter proteins showed beta-sheet dominated structures that are similar to parent proteins, and the other five recombined proteins showed signatures of the formation of significant alpha-helical or random coil-like structure. Single molecule AFM revealed that six recombined daughter proteins are mechanically stable and exhibit mechanical properties that are different from the parent proteins. In contrast, another four of the hybrid proteins were found to be mechanically labile and unfold at forces that are lower than the approximately 20 pN, as we could not detect any unfolding force peaks. The last three hybrid proteins showed interesting duality in their mechanical unfolding behaviors. These results demonstrate the great potential of using recombination-based approaches to engineer novel elastomeric protein domains of diverse mechanical properties. Moreover, our results also revealed the challenges and complexity of developing a recombination-based approach into a laboratory-based directed evolution approach to engineer novel elastomeric proteins.  相似文献   
96.
Each of the heads of the motor protein myosin II is capable of supporting motion. A previous report showed that double-headed myosin generates twice the displacement of single-headed myosin (Tyska, M.J., D.E. Dupuis, W.H. Guilford, J.B. Patlak, G.S. Waller, K.M. Trybus, D.M. Warshaw, and S. Lowey. 1999. Proc. Natl. Acad. Sci. USA. 96:4402-4407). To determine the role of the second head, we expressed a smooth muscle heterodimeric heavy meromyosin (HMM) with one wild-type head, and the other locked in a weak actin-binding state by introducing a point mutation in switch II (E470A). Homodimeric E470A HMM did not support in vitro motility, and only slowly hydrolyzed MgATP. Optical trap measurements revealed that the heterodimer generated unitary displacements of 10.4 nm, strikingly similar to wild-type HMM (10.2 nm) and approximately twice that of single-headed subfragment-1 (4.4 nm). These data show that a double-headed molecule can achieve a working stroke of approximately 10 nm with only one active head and an inactive weak-binding partner. We propose that the second head optimizes the orientation and/or stabilizes the structure of the motion-generating head, thereby resulting in maximum displacement.  相似文献   
97.
The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single‐molecule level by using atomic force microscopy. This peptide (p007) contains an α‐helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin–antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence‐specific DNA–peptide interaction has a potential to be utilized to prepare well‐defined mechanically stable DNA–protein hybrid nanostructures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
98.
Intrinsically disordered domains have been reported to play important roles in signal transduction networks by introducing cooperativity into protein–protein interactions. Unlike intrinsically disordered domains that become ordered upon binding, the EF-SAM domain in the stromal interaction molecule (STIM) 1 is distinct in that it is ordered in the monomeric state and partially unfolded in its oligomeric state, with the population of the two states depending on the local Ca2 + concentration. The oligomerization of STIM1, which triggers extracellular Ca2 + influx, exhibits cooperativity with respect to the local endoplasmic reticulum Ca2 + concentration. Although the physiological importance of the oligomerization reaction is well established, the mechanism of the observed cooperativity is not known. Here, we examine the response of the STIM1 EF-SAM domain to changes in Ca2 + concentration using mathematical modeling based on in vitro experiments. We find that the EF-SAM domain partially unfolds and dimerizes cooperatively with respect to Ca2 + concentration, with Hill coefficients and half-maximal activation concentrations very close to the values observed in vivo for STIM1 redistribution and extracellular Ca2 + influx. Our mathematical model of the dimerization reaction agrees quantitatively with our analytical ultracentrifugation-based measurements and previously published free energies of unfolding. A simple interpretation of these results is that Ca2 + loss effectively acts as a denaturant, enabling cooperative dimerization and robust signal transduction. We present a structural model of the Ca2 +-unbound EF-SAM domain that is consistent with a wide range of evidence, including resistance to proteolytic cleavage of the putative dimerization portion.  相似文献   
99.
Depletion of Ca2+ from the endoplasmic reticulum (ER) lumen triggers the opening of Ca2+ release-activated Ca2+ (CRAC) channels at the plasma membrane. CRAC channels are activated by stromal interaction molecule 1 (STIM1), an ER resident protein that senses Ca2+ store depletion and interacts with Orai1, the pore-forming subunit of the channel. The subunit stoichiometry of the CRAC channel is controversial. Here we provide evidence, using atomic force microscopy (AFM) imaging, that Orai1 assembles as a hexamer, and that STIM1 binds to Orai1 with sixfold symmetry. STIM1 associates with Orai1 in the form of monomers, dimers, and multimeric string-like structures that form links between the Orai1 hexamers. Our results provide new insights into the nature of the interactions between STIM1 and Orai1.  相似文献   
100.
A novel immobilization method based on oligonucleotide as linker has been developed for small molecule microarrays (SMMs) construction. The oligonucleotide tail was employed as a linker in solid-phase synthesis. Small molecules could be easily conjugated at the 5′ end of the oligonucleotide, previously modified with a functional group. Being a reactive species, the oligonucleotide was activated by UV irradiation, for the attachment of the conjugate to the slide surface. The method was successfully applied to structurally distinct small molecules, including biotin, antibiotic and drug. This immobilization strategy showed high efficiency, 1.1 fmol of small molecules in the spotting solution per spot gave a detectable signal (mean S/N = 10.9). The results suggest that it is very promising for exploring interaction between small molecules and proteins, and high throughput detecting the chemical compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号