首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1660篇
  免费   201篇
  国内免费   346篇
  2207篇
  2024年   10篇
  2023年   25篇
  2022年   19篇
  2021年   52篇
  2020年   64篇
  2019年   66篇
  2018年   45篇
  2017年   49篇
  2016年   57篇
  2015年   54篇
  2014年   69篇
  2013年   92篇
  2012年   63篇
  2011年   86篇
  2010年   68篇
  2009年   87篇
  2008年   84篇
  2007年   104篇
  2006年   101篇
  2005年   96篇
  2004年   94篇
  2003年   87篇
  2002年   69篇
  2001年   70篇
  2000年   87篇
  1999年   61篇
  1998年   62篇
  1997年   41篇
  1996年   31篇
  1995年   37篇
  1994年   37篇
  1993年   26篇
  1992年   38篇
  1991年   18篇
  1990年   33篇
  1989年   16篇
  1988年   21篇
  1987年   9篇
  1986年   17篇
  1985年   9篇
  1984年   8篇
  1983年   7篇
  1982年   11篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   2篇
  1973年   1篇
排序方式: 共有2207条查询结果,搜索用时 15 毫秒
21.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
22.
Phytoplankton biomass, morphological and taxonomic composition, species diversity and productivity were analyzed in a shallow lake of the Middle Paraná River floodplain (El Tigre, 31 ° 41 S and 60° 42 W), between November 1986 and July 1988. Lake inundation (filling and through-flow phases) constituted an intense long-term perturbation in the physical and chemical environment. As the lake filled with river water, K-selected species (netplanktonic filamentous bluegreens, > 37 µm, with low surface area/volume (SA/V) ratios) that had existed prior to filling (late spring 1986) were replaced in summer-fall by r-selected species (nannoplanktonic chlorophytes and cryptophytes, < 37 µm, mainly stout forms with high SA/V ratios). During the through-flow phase, lentic phytoplankton was replaced by lotic flagellate populations due to the direct flushing by river water. During the period of falling water (drainage and isolation phases), nanoplanktonic algae with similar characteristics to those of the filling phase dominated in late winter-spring. Later in the isolation phase, these were succeeded by K-selected species (netplanktonic algae, mainly motile spherical dinoflagellates and filamentous bluegreens with low SA/V ratios). Simultaneously, primary production per unit biomass decreased and total biomass and specific diversity increased. Seasonal changes of phytoplankton in floodplain lakes can be interpreted as the interaction between true successional development (as observed in the drainage and isolation phases) and intermediate disturbance. Using Reynolds' terminology, short-term disturbance (slight inflow of nutrient-rich river water) caused reversion to an earlier stage in the former succession, and long-term disturbance (lake inundation) truncated the successional progression and a new (or shifted) succession was initiated.  相似文献   
23.
Abstract. The availability of maj or plant resources was investigated in three vegetation types that were assumed to represent different stages of a secondary succession on heathland on the Lüneburger Heide, northwestern Germany. Canopy transmission and absorption of photosynthetically active radiation (PAR), soil-water availability, and nutrient (Ca, K, Mg, N, P) availability were monitored with high spatial and temporal resolution in (1) a Calluna vulgaris heathland, (2) a pioneer birch-pine forest and (3) a late-successional oak-beech forest, situated close to each other on comparable geological substrate (diluvial). Mean fractional transmission of PAR during summer decreased from 0.48 in the heathland to 0.04 in the oak-beech forest while the fractional canopy absorption increased from 0.49 to 0.92. Soil-water availability as indicated by the soil-water potential, was significantly influenced by differential canopy interception loss and characteristic rooting patterns in the three vegetation types. Annual mean nutrient concentrations in the equilibrium soil solution were similar or, for some elements, increased from the heathland to the birch-pine and the oak-beech forest despite a growing demand. A marked increase was found for the total nutrient pools in the soil-organic layer between early and late successional vegetation types. On the poor glacial parent material, nutrient pools seem to be strongly dependent on stand productivity and litter production which increased with succession. Thus, for nutrients, facilitation seems to be important in this type of succession.  相似文献   
24.
We investigated which of the following environmental factors: the number of years since the windthrow of the tree (the age of dead wood), the phytocenosis (the type of forest community), altitude, exposure, wood hardness and the spatial scale of forest disturbances (small gaps with a few fallen spruces vs large-area windthrows) contributed to the diversity and abundance of lichens inhabiting the exposed wood of windthrown spruce trees in Polish Western Carpathian forests. Both Shannon H index and sum of coverage coefficients rose with increasing age of the wood, levelling off after 11–14 y (diversity) and 14–17 y (abundance). This factor appeared to be the most important for this group of lichens, but the significant positive impact of large-area windthrows on the lichen abundance was also demonstrated by using a GLM model. The age of the wood we precisely determined on the basis of data on Norway spruce mortality collected annually in permanent plots of the Gorce National Park since 2000. Using the Shore durometer we linked the course of the wood-inhabiting lichen succession with wood decay more precisely than before. The largest number of species was associated with medium hard wood, i.e., 51 < x ≤ 80 on the Shore scale. Based on the NMDS analysis, we distinguished four age groups of logs, differing in lichen abundance and defined by the dominance of distinctive species. A large number of usually corticolous lichen species used the wood of windthrown spruce logs as an optional habitat to survive large-scale, post-hurricane forest disturbances.  相似文献   
25.
Laboratory streams were used in a 42-day experiment designed to investigate how the spatial and temporal distribution of lotic periphyton created by current flow over cobble-size substrates is a affected by irradiance. The streams contained 22.5 × 22.5 × 4 cm substrate blocks and were exposed to either 385, 90 or 20 μE·m?2·s?1. We monitored periphyton succession in fast current regimes on top of blocks and in slower current regimes on surfaces recessed between blocks. The absolute differences in AFDW algal biomass between top and recessed substrates were significantly affected by irradiance and time. At the end of the experiment, biomass in streams exposed to 385 μE·m?2·s?1. was approximately 2 and 8 times greater than in streams exposed to 90 and 20 μE·m?2·s?1, respectively. Differences in biomass were greater between irradiance levels than between top and recessed substrates within an irradiance level. Irradiance also had a greater effect than current regime on the taxonomic composition of assemblages. Oscillatoria agardhii Gomont and Navicula minima Grun. characterized assemblages at 20 μE·m?2·s?1, whereas Fragilaria vaucheriae (Kütz.), Nitzschia oregona Sov., Navicula arvensis Hust. and Stigeoclonium tenue (Ag.) Kütz. were more abundant at the two higher irradiances. Detrended correspondence analysis indicated that the rate of succession was relatively high for assemblages at high irradiance and in the slow current regimes between blocks. The results suggested that in natural streams, periphyton patches produced by large differences in irradiance should have a greater effect on periphyton heterogeneity than substrate-induced patches. Moreover, the heterogeneity of algal patches produced by hydrologic differences over a substrate is constrained by irradiance level.  相似文献   
26.
Short-term (24–48 h) colonization dynamics of periphytic diatoms on artificial (styrofoam) substrata were examined using fast-flushing, continuous-flow troughs located on the North Thompson River, British Columbia. Two parallel troughs, one exposed to natural light and the other completely darkened, showed significant differences in periphyton biomass, chlorophyll a, and algal taxonomic composition with 24 h. Experiments which commenced at the onset of natural darkness demonstrated that rates of algal immigration during the night were the same in both troughs. Within 2–3 h of sunrise, however, certain diatom species (most notably Hannaea arcus (Ehr.) Pair, and Diatoma tenue Ag.) selectively emigrated from the artificially darkened trough but remained in the trough exposed to natural light. More closely adhering species such as Achnanthes minutissima Kütz, also showed significant emigration from the darkened trough after light deprivation for two photoperiods. Data from adhesion, emigration, and sinking rate experiments indicate that differential egress of cells from the darkened versus the lighted environments is the result of cellular regulation of buoyancy or form resistance.  相似文献   
27.
Abstract We compared the floristic composition and structure of restoration areas of eucalypt woodland with untreated pasture (control) and remnant vegetation (reference) in western Sydney. The restored areas comprised over 1,000 ha of abandoned pasture, which had been treated to reduce weeds and planted with seedlings of 26 native plant species raised from seed obtained locally from remnant vegetation. Plantings were carried out 0–9 years ago. Floristic composition was measured in quadrats using frequency scores and cover abundance. As far as possible treatments and restoration ages were replicated across sites. Ordination and analyses of similarity failed to distinguish the composition of restored vegetation from that of untreated pasture, which were both significantly different from that of remnant vegetation. There was a weak compositional trend with age of restored vegetation, but this was not in the direction of increasing resemblance to remnant vegetation. There was some evidence for convergence in structural features of restored with remnant vegetation, but this was at least partly attributed to plant growth. Subject to constraints imposed by the sampling design, environmental factors, and spatial variation were discounted as explanations for the results. The results therefore suggest either failure of restoration treatments or a restoration trajectory that is too slow to detect within 10 years of establishment. Our conclusions agree with those of similar studies in other ecosystems and support: (1) the need to monitor restoration projects against ecological criteria with rigorous sampling designs and analytical methods, (2) further development of restoration methods, and (3) regulatory approaches that seek to prevent damage to ecosystems rather than those predicated on replacing losses with reconstructed ecosystems.  相似文献   
28.
The currently widespread abandoning of agricultural land use in Western Europe offers new opportunities for ecological restoration and nature conservation. This is illustrated for abandoned arable fields and for permanent grasslands cut for hay after the cessation of fertilizer application. Although initiated by a sudden reduction of nutrient input to the system, the changing nutrient supply from the soil is considered to be the main driving force of succession. The soil nutrient supply is affected by soil organisms, both directly (root symbionts and herbivores) and indirectly (nutrient mineralization from dead organic matter). It is argued that because of the close association of changes in species diversity with changes in the functioning of ecosystems, biodiversity has to be studied in an ecosystem ecology context.  相似文献   
29.
 根据内蒙古典型草原地带的羊草+大针茅草原退化变型一冷蒿群落封育12年(1983—1994)的动态监测数据进行分析,对群落恢复演替轨迹取得以下认识: 1.依据群落优势种的更替及主分量分析结果可将恢复演替过程划分为冷蒿优势阶段、冷蒿+冰草阶段、冰草优势阶段、羊草优势阶段。 2;退化草原群落在恢复演替过程中,群落生产力的变化表现出阶梯式跃变和亚稳态阶面相间的特点。第一次跃变发生在1984年,上升到第二个阶面,第二次跃变发生在1990年,进入了第三个阶面,已接近于原生群落的生产力。 3.群落生产力与水资源量的关系因恢复演替阶段不同而异。第一亚稳态时期,群落地上现存生物量大体处于166g·m-2的水平上,生长季降水量达176mm以上时,增加降水对群落生产力的提高不发生显著影响。第二亚稳态时期,群落生物量与降水量之间的相关性显著。可推算出群落于物质生产用水量介于1.1~1.6mm·g-1之间。此值在1.1mm·g-1时,群落对水资源的利用效率最高,而在1.6mm·g-1时群落生物量达到最大值。 4.在恢复演替进程中,群落密度的位点常数约为271.5株·m-2,循此常数上下波动,表现出拥挤与稀疏交替发生的过程,构成了恢复演替的节奏性变化。群落生物量的跃变与亚稳态的形成,以及群落密度的拥挤与稀疏交替作用是群落恢复演替的内在机制。恢复演替的速度,到第10年发生了1.78个半变的生态距离。5.草原退化群落恢复演替过程中,按照其节奏性及生产力跃变与亚稳态的规律,调控放牧利用强度或采取技术措施,调节群落拥挤和稀疏的交替过程可加速恢复演替进程。  相似文献   
30.
Abstract. Previous studies on secondary succession in abandoned agricultural land in the Mediterranean area were carried out by the chronosequence method, including data from different sites. A unique opportunity to study secondary succession arose from a situation in which different parts of one homogeneous East-Mediterranean vineyard were abandoned for 5, 8, 15 and 35 yr, and did not suffer from any disturbance subsequently. Most of the perennial species that colonized the abandoned vineyard were fleshy fruited species, which apparently were dispersed by birds from the surrounding maquis into the vineyard. These bird-dispersed species were the first to be established, and were the dominant plant group according to dispersal modes. The abandoned vine plants and their supporting columns provided the birds with perching and feeding sites, enhancing the arrival of bird-dispersed species regardless of their life forms. Under these conditions the most important attribute that affected vegetation dynamics was seed dispersal mode. Trees were among the first to colonize in the vineyard, implying that no facilitation was needed for their establishment. Annual plant species were the only species to disappear during succession. Almost all perennial species which had arrived persisted in the vineyard, and no replacement of perennial species was found. The rate of succession was rapid, as expressed by the short time (8–15 yr) needed for the stabilization of species composition, for growth to average height of late succession trees, and for reaching high cover of the invading perennial species in the abandoned vineyard. The secondary succession described above differs from that in the western Mediterranean by the absence of perennial species replacement and its rapid rate. The possible causes are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号