首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2355篇
  免费   191篇
  国内免费   134篇
  2024年   5篇
  2023年   50篇
  2022年   56篇
  2021年   54篇
  2020年   74篇
  2019年   85篇
  2018年   75篇
  2017年   94篇
  2016年   64篇
  2015年   73篇
  2014年   145篇
  2013年   160篇
  2012年   77篇
  2011年   105篇
  2010年   76篇
  2009年   104篇
  2008年   158篇
  2007年   136篇
  2006年   122篇
  2005年   96篇
  2004年   87篇
  2003年   79篇
  2002年   59篇
  2001年   36篇
  2000年   50篇
  1999年   51篇
  1998年   48篇
  1997年   43篇
  1996年   35篇
  1995年   43篇
  1994年   43篇
  1993年   35篇
  1992年   33篇
  1991年   17篇
  1990年   25篇
  1989年   21篇
  1988年   20篇
  1987年   18篇
  1986年   13篇
  1985年   28篇
  1984年   21篇
  1983年   16篇
  1982年   15篇
  1981年   9篇
  1980年   4篇
  1979年   9篇
  1977年   6篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有2680条查询结果,搜索用时 437 毫秒
121.
A structural class in the MemGen classification of membrane proteins is a set of evolutionary related proteins sharing a similar global fold. A structural class contains both closely related pairs of proteins for which homology is clear from sequence comparison and very distantly related pairs, for which it is not possible to establish homology based on sequence similarity alone. In the latter case the evolutionary link is based on hydropathy profile analysis. Here, we use these evolutionary related sets of proteins to analyze the relationship between E-values in BLAST searches, sequence similarities in multiple sequence alignments and structural similarities in hydropathy profile analyses. Two structural classes of secondary transporters termed ST[3], which includes the Ion Transporter (IT) superfamily and ST[4], which includes the DAACS family (TC# 2.A.23) were extracted from the NCBI protein database. ST[3] contains 2051 unique sequences distributed over 32 families and 59 subfamilies. ST[4] is a smaller class containing 399 unique sequences distributed over 2 families and 7 subfamilies. One subfamily in ST[4] contains a new class of binding protein dependent secondary transporters. Comparison of the averaged hydropathy profiles of the subfamilies in ST[3] and ST[4] revealed that the two classes represent different folds. Divergence of the sequences in ST[4] is much smaller than observed in ST[3], suggesting different constraints on the proteins during evolution. Analysis of the correlation between the evolutionary relationship of pairs of proteins in a class and the BLAST E-value revealed that: (i) the BLAST algorithm is unable to pick up the majority of the links between proteins in structural class ST[3], (ii) ‘low complexity filtering’ and ‘composition based statistics’ improve the specificity, but strongly reduce the sensitivity of BLAST searches for distantly related proteins, indicating that these filters are too stringent for the proteins analyzed, and (iii) the E-value cut-off, which may be used to evaluate evolutionary significance of a hit in a BLAST search is very different for the two structural classes of membrane proteins.  相似文献   
122.
观察联合应用siRNA对HepG2.2.15细胞中HBV抗原表达和复制的抑制作用。应用ELISA方法检测HBeAg和HBsAg;HBVDNA水平用实时定量PCR测定;用RT—PCR检测HBVmRNA水平。结果显示,实验中应用的HBV特异性siRNA均具有明显的抗HBV抗原表达和病毒复制作用;联合应用siRNA较单独应用具有更强的抗HBV作用。可见,HepG2.2.15细胞中联合应用siRNA对HBV复制的抑制作用比单独应用siRNA更有效。  相似文献   
123.
Background: Participation in screening tests for colorectal cancer (CRC) is generally low in Ontario, Canada. In addition, inequities in participation exist including lower participation among low-income individuals, males and individuals living in rural areas. In April 2008, Colon Cancer Check (CCC) program, the province-wide CRC screening program, was launched in Ontario. This study describes the trends and inequities in CRC screening participation three years before and three years after the CCC, and assesses the effect of the program on CRC screening participation, overall and among certain population groups. Methods: We used administrative data to identify cohorts of individuals eligible for CRC screening in fiscal years 2005–2011. We calculated the age-standardized percent of Fecal Occult Blood Test (FOBT) participation, large bowel endoscopy participation, and being ‘up-to-date’ with CRC screening tests. Results: From 2005 to 2011, FOBT participation increased from 7.6% to 14.8%, large bowel endoscopy participation from 3.4% to 5.7%, and ‘up-to-date’ with CRC screening from 27.2% to 41.3%. Before the launch of the CCC program, the quarterly increase in FOBT participation was 0.07% (p = 0.19), increased immediately after the launch (1.8%, p < 0.01), followed by a decline (?0.08%, p = 0.08), returning to its pre-program increase rate. We noted a significant decrease in FOBT participation every summer (?0.44%, p < 0.01). The CCC program had minimal effect on large bowel endoscopy participation. Before the launch of the CCC program, the quarterly increase in ‘up-to-date’ with CRC screening was 0.9% (p < 0.01), increased immediately after the launch (2.5%, p = 0.05), followed by a modest decline thereafter (?0.59%, p < 0.02). From 2005 to 2011, recent residents living in low-income neighborhoods were consistently and significantly less likely to have a FOBT and be ‘up-to-date’ with CRC screening than long-term residents living in high-income neighborhoods (2.9–4.5%; 14.7–17.3% respectively). Pre-CCC inequities in CRC participation persisted after the launch of the program. Conclusion: CRC testing was increasing in Ontario from 2005. An immediate increase in CRC testing, FOBT in particular, occurred after the launch of the CCC program, followed by a return to its pre-CCC increase rate thereafter. Future efforts are needed to improve screening participation and address inequities.  相似文献   
124.
The evolutionary origin of the vertebrate jaw persists as a deeply puzzling mystery. More than 99% of living vertebrates have jaws, but the evolutionary sequence that ultimately gave rise to this highly successful innovation remains controversial. A synthesis of recent fossil and embryological findings offers a novel solution to this enduring puzzle. The Mandibular Confinement Hypothesis proposes that the jaw evolved via spatial confinement of the mandibular arch (the most anterior pharyngeal arch within which the jaw arose). Fossil and anatomical evidence reveals: (i) the mandibular region was initially extensive and distinct among the pharyngeal arches; and (ii) with spatial confinement, the mandibular arch acquired a common pharyngeal pattern only at the origin of the jaw. The confinement occurred via a shift of a domain boundary that restricted the space the mesenchymal cells of the mandibular arch could occupy. As the surrounding domains replaced mandibular structures at the periphery, this shift allowed neural crest cells and mesodermal mesenchyme of the mandibular arch to acquire patterning programs that operate in the more posterior arches. The mesenchymal population within the mandibular arch was therefore no longer required to differentiate into specialized feeding and ventilation structures, and was remodelled into a jaw. Embryological evidence corroborates that the mandibular arch must be spatially confined for a jaw to develop. This new interpretation suggests neural crest as a key facilitator in correlating elements of the classically recognized vertebrate head ‘segmentation’.  相似文献   
125.
Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including both linkage populations and association populations, to dissect the genetic architecture of male inflorescence. The linkage populations include 25 families developed in the U.S. and 11 families developed in China. Each family contains approximately 200 recombinant inbred lines (RILs). The association populations include approximately 1000 diverse lines from the U.S. and China. All inbreds were genotyped by either sequencing or microarray. Inflorescence size was measured as the tassel primary branch number (TBN) and tassel length (TL). A total of 125 quantitative trait loci (QTLs) were identified (63 for TBN, 62 for TL) through linkage analyses. In addition, 965 quantitative trait nucleotides (QTNs) were identified through genomewide study (GWAS) at a bootstrap posterior probability (BPP) above a 5% threshold. These QTLs/QTNs include 24 known genes that were cloned using mutants, for example Ramosa3 (ra3), Thick tassel dwarf1 (td1), tasselseed2 (ts2), liguleless2 (lg2), ramosa1 (ra1), barren stalk1 (ba1), branch silkless1 (bd1) and tasselseed6 (ts6). The newly identified genes encode a zinc transporter (e.g. GRMZM5G838098 and GRMZM2G047762), the adapt in terminal region protein (e.g. GRMZM5G885628), O‐methyl‐transferase (e.g. GRMZM2G147491), helix‐loop‐helix (HLH) DNA‐binding proteins (e.g. GRMZM2G414252 and GRMZM2G042895) and an SBP‐box protein (e.g. GRMZM2G058588). These results provide extensive genetic information to dissect the genetic architecture of inflorescence size for the improvement of maize yield.  相似文献   
126.
目的:探讨低强度周期性静水压力对体外培养的人膝关节软骨细胞增殖、凋亡,以及细胞Ⅱ型胶原分泌表达的影响。方法:体外酶消化法分离培养成人膝关节正常软骨细胞,将培养的第3代软骨细胞分为两组:正常对照组、3.0MPa组压力实验组,应用多功能恒温体外细胞培养中高压静水压力加载装置加载低强度周期性压力,共5d,每天2h。Ⅱ型胶原免疫组织化学染色法和甲苯胺蓝染色法鉴定软骨细胞,流式细胞术检测细胞凋亡,四甲基偶氮唑蓝(MTT)法绘制细胞生长曲线,qRT-PCR、Western-Blot检测Ⅱ型胶原的分泌和表达。结果:软骨细胞Ⅱ型胶原免疫组织化学染色和甲苯胺蓝染色均显示为阳性。与正常对照组相比,3.0MPa组表现出促进软骨细胞增殖,抑制细胞凋亡,且Ⅱ型胶原的合成分泌明显升高(P0.05)。结论:通过体外模拟人生理情况下较低强度(3.0MPa)的周期性静水压力对人软骨细胞增殖、凋亡水平及周围基质分泌合成功能的影响,初步证实了较低强度压力有助于软骨自我修复和自身保护作用的发挥。  相似文献   
127.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   
128.
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.  相似文献   
129.
Site-specific variation of collagen fibril orientations can affect cartilage stresses in knee joints. However, this has not been confirmed by 3-D analyses. Therefore, we present a novel method for evaluation of the effect of patient-specific collagen architecture on time-dependent mechanical responses of knee joint cartilage during gait. 3-D finite element (FE) models of a human knee joint were created with the collagen architectures obtained from T2 mapped MRI (patient-specific model) and from literature (literature model). The effect of accuracy of the implementation of collagen fibril architecture into the model was examined by using a submodel with denser FE mesh. Compared to the literature model, fibril strains and maximum principal stresses were reduced especially in the superficial/middle regions of medial tibial cartilage in the patient-specific model after the loading response of gait (up to ?413 and ?26%, respectively). Compared to the more coarsely meshed joint model, the patient-specific submodel demonstrated similar strain and stress distributions but increased values particularly in the superficial cartilage regions (especially stresses increased >60%). The results demonstrate that implementation of subject-specific collagen architecture of cartilage in 3-D modulates location- and time-dependent mechanical responses of human knee joint cartilage. Submodeling with more accurate implementation of collagen fibril architecture alters cartilage stresses particularly in the superficial/middle tissue.  相似文献   
130.
Modelling the shoulder's musculature is challenging given its mechanical and geometric complexity. The use of the ideal fibre model to represent a muscle's line of action cannot always faithfully represent the mechanical effect of each muscle, leading to considerable differences between model-estimated and in vivo measured muscle activity. While the musculo–tendon force coordination problem has been extensively analysed in terms of the cost function, only few works have investigated the existence and sensitivity of solutions to fibre topology. The goal of this paper is to present an analysis of the solution set using the concepts of torque-feasible space (TFS) and wrench-feasible space (WFS) from cable-driven robotics. A shoulder model is presented and a simple musculo–tendon force coordination problem is defined. The ideal fibre model for representing muscles is reviewed and the TFS and WFS are defined, leading to the necessary and sufficient conditions for the existence of a solution. The shoulder model's TFS is analysed to explain the lack of anterior deltoid (DLTa) activity. Based on the analysis, a modification of the model's muscle fibre geometry is proposed. The performance with and without the modification is assessed by solving the musculo–tendon force coordination problem for quasi-static abduction in the scapular plane. After the proposed modification, the DLTa reaches 20% of activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号