首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   6篇
  国内免费   6篇
  2023年   5篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   3篇
  2015年   6篇
  2014年   18篇
  2013年   20篇
  2012年   7篇
  2011年   21篇
  2010年   20篇
  2009年   27篇
  2008年   23篇
  2007年   21篇
  2006年   18篇
  2005年   18篇
  2004年   11篇
  2003年   14篇
  2002年   12篇
  2001年   3篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
排序方式: 共有327条查询结果,搜索用时 31 毫秒
81.
SecA, the ATPase of Sec translocase, mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. Here we report the structures of Escherichia coli Sec intermediates during preprotein translocation as visualized by electron microscopy to probe the oligomeric states of SecA during this process. We found that the translocase holoenzyme is symmetrically assembled by SecA and SecYEG on proteoliposomes, whereas the translocation intermediate 31 (I31) becomes asymmetric because of the presence of preprotein. Moreover, SecA is a dimer in these two translocation complexes. This work also shows surface topological changes in the components of translocation intermediates by immunogold labeling. The channel entry for preprotein translocation was found at the center of the I31 structures. Our results indicate that the presence of preprotein introduces asymmetry into translocation intermediates, while SecA remains dimeric during the translocation process.  相似文献   
82.
Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium which secretes a wide range of hydrolytic enzymes, toxins, and virulence factors into the extracellular medium. Although P. aeruginosa possesses numerous specific systems for the export of proteins across its double-membrane envelopes, the Sec system is still the major and essential mechanism. However, very little is known about its molecular basis. We constructed, cloned, and expressed the N-terminal 236 amino acids of PaSecA domain (PaSecAN236), and SecAL43P mutants of P. aeruginosa in Escherichia coli BL21.19 (secA(ts)). Here, we describe the purification of PaSecAN236 by using osmotic shock as the first step to efficiently release targeted protein from cells, followed by cation-exchange and size exclusion columns to obtain homogeneous PaSecAN236. The purified PaSecA N-terminal domain was functional in stimulating the ATPase activity of mutant SecAL43P protein of P. aeruginosa.  相似文献   
83.
In Escherichia coli, SecA is a large, multifunctional protein that is a vital component of the general protein secretion pathway. In its membrane-bound form it functions as the motor component of the protein translocase, perhaps through successive rounds of membrane insertion and ATP hydrolysis. To understand both the energy conversion process and translocase assembly, we have used contrast-matched, small-angle neutron-scattering (SANS) experiments to examine SecA in small unilamellar vesicles of E.coli phospholipids. In the absence of nucleotide, we observe a dimeric form of SecA with a radius of gyration comparable to that previously observed for SecA in solution. In contrast, the presence of either ADP or a non-hydrolyzable ATP analog induces conversion to a monomeric form. The larger radius of gyration for the ATP-bound relative to the ADP-bound form suggests the former has a more expanded global conformation. This is the first direct structural determination of SecA in a lipid bilayer. The SANS data indicate that nucleotide turnover can function as a switch of conformation of SecA in the membrane in a manner consistent with its proposed role in successive cycles of deep membrane penetration and release with concommitant preprotein insertion.  相似文献   
84.
KATP channel openers have been shown to protect ischemic-reperfused myocardium by mimicking ischemic preconditioning, although their mechanisms of action have not been fully clarified. In this study we investigated the influence of the adenine nucleotide translocase (ANT) inhibitors–carboxyatractyloside (CAT) and bongkrekic acid (BA)–on the diazoxide- and pinacidil-induced uncoupling of isolated rat heart mitochondria respiring on pyruvate and malate (6 + 6 mM). We found that both CAT (1.3 M) and BA (20 M) markedly reduced the uncoupling of mitochondrial oxidative phosphorylation induced by the KATP channel openers. Thus, the uncoupling effect of diazoxide and pinacidil is evident only when ANT is not fixed by inhibitors in neither the C- nor the M-conformation. Moreover, the uncoupling effect of diazoxide and pinacidil was diminished in the presence of ADP or ATP, indicating a competition of KATP channel openers with adenine nucleotides. CAT also abolished K+-dependent mitochondrial respiratory changes. Thus ANT could also be involved in the regulation of KATP-channel-openers-induced K+ flux through the inner mitochondrial membrane.  相似文献   
85.
SecB, a small tetrameric cytosolic chaperone in Escherichia coli, facilitates the export of precursor poly-peptides by maintaining them in a nonnative conformation and passing them to SecA, which is a peripheral member of the membrane-bound translocation apparatus. It has been proposed by several laboratories that as SecA interacts with various components along the export pathway, it undergoes conformational changes that are crucial to its function. Here we report details of molecular interactions between SecA and SecB, which may serve as conformational switches. One site of interaction involves the final C-terminal 21 amino acids of SecA, which are positively charged and contain zinc. The C terminus of each subunit of the SecA dimer makes contact with the flat beta-sheet that is formed by each dimer of the SecB tetramer. Here we demonstrate that a second interaction exists between the extreme C-terminal alpha-helix of SecB and a site on SecA, as yet undefined but different from the C terminus of SecA. We investigated the energetics of the interactions by titration calorimetry and characterized the hydrodynamic properties of complexes stabilized by both interactions or each interaction singly using sedimentation velocity centrifugation.  相似文献   
86.
The carnitine–acylcarnitine translocase (CACT) is one of the components of the carnitine cycle. The carnitine cycle is necessary to shuttle long-chain fatty acids from the cytosol into the intramitochondrial space where mitochondrial β-oxidation of fatty acids takes place. The oxidation of fatty acids yields acetyl-coenzyme A (CoA) units, which may either be degraded to CO2 and H2O in the citric acid cycle to produce ATP or converted into ketone bodies which occurs in liver and kidneys.

Metabolic consequences of a defective CACT are hypoketotic hypoglycaemia under fasting conditions, hyperammonemia, elevated creatine kinase and transaminases, dicarboxylic aciduria, very low free carnitine and an abnormal acylcarnitine profile with marked elevation of the long-chain acylcarnitines.

Clinical signs and symptoms in CACT deficient patients, are a combination of energy depletion and endogenous toxicity. The predominantly affected organs are brain, heart and skeletal muscle, and liver, leading to neurological abnormalities, cardiomyopathy and arrythmias, skeletal muscle damage and liver dysfunction. Most patients become symptomatic in the neonatal period with a rapidly progressive deterioration and a high mortality rate. However, presentations at a later age with a milder phenotype have also been reported.

The therapeutic approach is the same as in other long-chain fatty acid disorders and includes intravenous glucose (± insulin) administration to maximally inhibit lipolysis and subsequent fatty acid oxidation during the acute deterioration, along with other measures such as ammonia detoxification, depending on the clinical features. Long-term strategy consists of avoidance of fasting with frequent meals and a special diet with restriction of long-chain fatty acids. Due to the extremely low free carnitine concentrations, carnitine supplementation is often needed.

Acylcarnitine profiling in plasma is the assay of choice for the diagnosis at a metabolite level. However, since the acylcarnitine profile observed in CACT-deficient patients is identical to that in CPT2-deficient patients, definitive identification of CACT-deficiency in a certain patient requires determination of the activity of CACT. Subsequently, mutational analysis of the CACT gene can be performed. So far, 9 different mutations have been identified in the CACT gene.  相似文献   

87.
The secretion of the Escherichia coli alkaline phosphatase with a different charge of signal peptide due to replacement of positively charged Lys(–20) has been studied depending on the phospholipid composition of the membranes and the activity of the translocational ATPase—protein SecA. Changing the signal peptide charge, along with a change in phospholipid composition, has been shown to reduce the efficiency of secretion. In the absence of phosphatidylethanolamine the membrane contains anionic phospholipids only, and the dependence of secretion on the signal peptide charge decreases. The dependence of secretion on membrane phospholipid composition and the signal peptide charge is also determined by the activity of SecA protein. If SecA is inactivated by sodium azide, then the dependence of secretion on anionic phospholipids increases; on the contrary, higher content of anionic phospholipids (in the absence of phosphatidylethanolamine) decreases the dependence of secretion on the SecA activity. The results suggest a direct interaction of positively charged signal peptide with negatively charged membrane phospholipids under initiation of secretion and also interdependent contribution of the signal peptide charge, anionic phospholipids, and translocational ATPase to secretion.  相似文献   
88.
89.
Regulatory role of E-NTPase/NTPDase in fat/CD36-mediated fatty acid uptake   总被引:1,自引:0,他引:1  
Fatty acid translocase (FAT)/CD36-mediated long-chain fatty acid uptake in human umbilical vessel endothelial cells is associated with as yet uncharacterized translocase activity. The molecular mechanism of its function is not yet understood. Numerous attempts to purify rat cardiac sarcolemmal E-NTPase (an integral membrane protein also referred to as ecto-Ca(2+)/Mg(2+)ATPase) have revealed a complete amino acid sequence identity for FAT/CD36 protein. The most striking observation is that purified CD36 from human platelets shows significant E-NTPase activity. In view of recent progress in understanding CD36 functional properties, an attempt is made in this article to illustrate the point that association of E-NTPase (possibly extracellular Ca(2+)/Mg(2+)nucleotide triphosphate diphosphohydrolase) activity with CD36 may be of potential functional significance.  相似文献   
90.
SecE, an essential component of the bacterial SecAYEG translocase, mediates protein translocation across the cytoplasmic membrane. In the thylakoid membranes of chloroplasts an SecE homologue, cpSecE, has recently been identified. In this report we show that insertion of cpSecE does not require stromal extract, indicating that signal recognition particle is not involved. Removal of nucleoside triphosphates has apparently no effect on the integration, again ruling out an involvement of SRP or its partner protein, FtsY. The use of well-known inhibitors of the Sec- and Tat pathways, sodium azide and nigericin, respectively, also had no influence on membrane insertion. The data presented here point towards cpSecE as another passenger of a wholly spontaneous import/insertion pathway in the thylakoids of chloroplasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号