首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   21篇
  国内免费   26篇
  240篇
  2023年   4篇
  2022年   6篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   11篇
  2014年   6篇
  2013年   11篇
  2012年   9篇
  2011年   7篇
  2010年   12篇
  2009年   10篇
  2008年   7篇
  2007年   11篇
  2006年   13篇
  2005年   14篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有240条查询结果,搜索用时 27 毫秒
91.
Macleaya alkaloids (abr. MCA), an extract from aerial parts of Macleaya cordata, was investigated on suppressing Sclerotinia stem rot disease. The median inhibitory concentrations (EC50) of MCA on mycelia growth were 5.21 μg mL?1 to carbendazim-susceptible (Ss01) and 6.34 μg mL?1 to carbendazim-resistant (Hm25) S. sclerotiorum, and there was no cross-resistance between MCA and carbendazim. MCA blocked the mycelial membrane leakage and regulated the exo-secretion of the reducing sugar and oxalate in a concentration-dependent manner. Moreover, MCA also significantly destroyed the redox balance including superoxide dismutase, peroxidase and catalase in Sclerotinia mycelia. In pot experiments, MCA showed an excellent antifungal efficacy on protecting rapeseed leaves from the infection of Ss01 and Hm25 isolates. The results suggested a potential possibility to develop MCA as an agro-chemical to control Sclerotinia stem rot disease and manage carbendazim resistance.  相似文献   
92.
Pseudomonas aeruginosa GRC1 exhibited strong antagonistic activity against Sclerotinia sclerotiorum, in vitro and in vivo. Scanning electron microscopic (SEM) studies showed morphological abnormalities such as perforation, lysis and fragmentation of hyphae of S. sclerotiorum caused by P. aeruginosa GRC1. This strain produced extracellular chitinase enzyme, the role of which was clearly demonstrated through Tn5 mutagenesis. Bacterization of peanut seeds with GRC1 resulted in increased seed germination and reduced stem-rot of peanut in S. sclerotiorum-infested soil by 97%. Other vegetative and yield plant parameters such as nodules per plant, pods and grain yield per plant were enhanced with a statistical significance in comparison to control. Neomycin resistant (GRC1neo+) bacterium was a good root colonizer and frequently isolated from rhizosphere of peanut plants. These findings showed P. aeruginosa GRC1 as a potential biocontrol agent against S. sclerotiorum.  相似文献   
93.
Oxalic acid (OA) occurs extensively in nature and plays diverse roles, especially in pathogenic processes involving various plant pathogens. However, proteome changes and modifications of signaling and oxidative network of plants in response to OA are not well understood. In order to investigate the responses of Brassica napus toward OA, a proteome analysis was conducted employing 2‐DE with MS/MS. A total of 37 proteins were identified as responding to OA stress, of which 13 were up‐regulated and 24 were down‐regulated. These proteins were categorized into several functional groups including protein processing, RNA processing, photosynthesis, signal transduction, stress response, and redox homeostasis. Investigation of the effect of OA on phytohormone signaling and oxidative responses revealed that jasmonic acid‐, ethylene‐, and abscisic acid‐mediated signaling pathways appear to increase at later time points, whereas those pathways mediated by salicylic acid appear to be suppressed. Moreover, the activities of the antioxidant enzymes catalase, peroxidase, superoxide dismutase and oxalic acid oxidase, but not NADPH oxidase, were suppressed by OA stress. Our findings are discussed within the context of the proposed role(s) of OA during infection by Sclerotinia sclerotiorum and subsequent disease progression.  相似文献   
94.
In this study, sensitivities of 156 Sclerotinia sclerotiorum isolates collected from sunflower fields of West Azarbaijan province, Iran, were assessed to carbendazim and iprodione, and the baseline sensitivities were established for azoxystrobin and tebuconazole. Resistance to carbendazim and iprodione was observed in 53.85% and 4.49% of the isolates, respectively. The 50% effective concentration (EC50) values of azoxystrobin for the isolates ranged from 0.017 to 3.515 μg/ml with a mean of 0.330 μg/ml, and 8.97% of the strains showed low levels of resistance to the fungicide. However, in the presence of salicylhydroxamic acid, all isolates were sensitive to azoxystrobin and EC50 values ranged from 0.015 to 0.263 μg/ml with a mean of 0.086 μg/ml. All isolates were found to be sensitive to tebuconazole, and EC50 values ranged from 0.003 to 0.177 μg/ml with a mean of 0.036 μg/ml. Among the multiple-resistant isolates, the strains exhibiting resistance to both carbendazim and iprodione were detected in the highest frequency (4.49%). No correlation was observed between mycelial growth and aggressiveness with fungicide sensitivity of the isolates suggesting the absence of fitness cost associated with resistance to the studied fungicides. The results indicated that iprodione, azoxystrobin and tebuconazole could be effectively used in rotation or mixture in spray programmes to manage S. sclerotiorum in the region. The baselines established for azoxystrobin and tebuconazole would be useful in monitoring the fungal populations in the province to assess possible shifts in fungicide sensitivity of S. sclerotiorum isolates in the future.  相似文献   
95.
Yanni  Yin  Laisong  Ding  Xin  Liu  Jinghui  Yang  Zhonghua  Ma 《Journal of Phytopathology》2009,157(7-8):465-469
Stem rot caused by Sclerotinia sclerotiorum is a very serious disease on oilseed rape worldwide. In this study, a pair of polymerase chain reaction (PCR) primers was designed based on the nucleotide sequence of a DNA region amplified by a microsatellite primer M13. The primer pair amplified a 252-bp fragment from all S. sclerotiorum isolates collected from oilseed rapes at different locations in different years, but not from any other fungus tested. Using this pair of primers, a real-time PCR assay was developed to rapidly detect early infection of S. sclerotiorum on petals of oilseed rape. The real-time PCR assay developed in this study could help growers make a timely decision on fungicide application.  相似文献   
96.
We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. -Difluoromethylornithine (DFMO) and -difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.  相似文献   
97.
Abstract

Sclerotinia stem rot (Sclerotinia sclerotiorum Lib. deBary) affects canola wherever it is grown. Seeding rates, which are believed to affect the microclimate beneath the canopy, were evaluated for their impact on sclerotinia stem rot incidence. A study with five seeding rates (2.2 kg/ha, 3.3 kg/ha, 6.7 kg/ha, 13.3 kg/ha and 20.0 kg/ha) and four canola cultivars chosen for their variation in canopy structure and lodging resistance was conducted in Carman, Manitoba, Canada, in 2001 to 2003. A significant relationship between sclerotinia stem rot disease incidence (DI) and seeding rate was found. With an increase in seeding rate, the DI was significantly increased in the mean of the canola cultivars, and individually, only in the lodging-prone cultivar AC Excel. Lodging significantly increased for all cultivars when seeding rates exceeded the standard 6.7 kg/ha. Multiple regression analysis revealed that both plant density and lodging explain the majority of the variation in DI. Both plant density and lodging resistance varied in having a larger influence on DI depending on the year and cultivar analysed. Our results indicate that increasing seeding rate does modify the microenvironment and increases the potential for lodging, which may be responsible for plant-to-plant spread of this disease.  相似文献   
98.
Coniothyrium minitans is a potential biological control agent of the plant pathogenic fungus Sclerotinia sclerotiorum. In this research, T-DNA insertional transformation of strain ZS-1 of C. minitans mediated by Agrobacterium tumefaciens was obtained, with optimization of spore maturity for transformation. After confirmation by PCR, transformants were subjected to Southern blot analysis, and results showed that more than 82.7% of transformants had single T-DNA insertions, and 12.1% of transformants had two copies T-DNA insertions. The genomic DNA segments of transformants flanking the T-DNA could be amplified from both borders with TAIL-PCR. Four types of mutants were screened and identified from the T-DNA insertional library, which comprised sporulation deficient mutants, pathogenicity deficient mutants, pigment change mutants and antibiotic deficient mutant, and some of the mutants were described; the number and frequency of each type of mutant from the library were calculated, and the frequency of each type is 3.27 x 10(-3), 1.0 x 10(-4), 1.4 x 10(-4), 2.5 x 10(-4), respectively. The successful creation of the T-DNA insertional transformation library may help us to unravel the interaction between a parasite and its host at a molecular level, to clarify the differentiation and development of this fungus, and to analyze and clone functional genes from the biocontrol microorganism in tripartite associations.  相似文献   
99.
J. Kaur    G. D. Munshi    R. S. Singh    E. Koch 《Journal of Phytopathology》2005,153(5):274-279
Three isolates of Trichoderma atroviride and two isolates of Coniothyrium minitans known to efficiently degrade sclerotia of Sclerotinia sclerotiorum were cultured on minimal medium with sucrose, carboxymethyl cellulose (CMC), xylan, laminarin, colloidal chitin or powdered sclerotia as carbon source. The activity of endochitinase, endo‐β‐1,3‐glucanase, endoxylanase and endocellulase in culture filtrates was determined after 7 and 15 days of culture using dye‐labelled substrates. The strongest inducers of chitinase were colloidal chitin and sclerotia powder. Chitinase activity appeared to be faster induced in the isolates of T. atroviride than in the isolates of C. minitans, but the maximum level of activity present in culture filtrates of the two species was similar. With CMC and xylan as carbon source, concurrent production of the corresponding enzymes was observed for the Trichoderma isolates. The isolates of C. minitans produced cellulase on xylan but not on CMC, whereas xylanase was produced on both carbon sources. Laminarin induced the formation of glucanases in the three isolates of T. atroviride but not the isolates of C. minitans. However, in the sclerotia‐containing cultures of C. minitans glucanase activity was even higher than in the respective cultures of the Trichoderma isolates. During the 31‐day study period, the pattern of enzyme production in shake cultures containing sclerotia powder was very similar for the isolates of T. atroviride and C. minitans. Glucanase activity generally reached a peak 24 days after inoculation of the flasks, whereas the activity of chitinase, cellulase and xylanase remained fairly constant throughout the experiment.  相似文献   
100.
Aims: To establish the modes of action of the antagonistic fungal strain Clonostachys rosea BAFC3874 isolated from suppressive soils against Sclerotinia sclerotiorum and to determine its potential as a biocontrol agent. Methods and Results: The antagonistic activity of C. rosea BAFC3874 was determined in vitro by dual cultures. The strain effectively antagonized S. sclerotiorum in pot‐grown lettuce and soybean plants. Antifungal activity assays of C. rosea BAFC3874 grown in culture established that the strain produced antifungal compounds against S. sclerotiorum associated with secondary metabolism. High mycelial growth inhibition coincided with sclerotia production inhibition. The C. rosea strain produced a microheterogeneous mixture of peptides belonging to the peptaibiotic family. Moreover, mycoparasitism activity was observed in the dual culture. Conclusions: Clonostachys rosea strain BAFC3874 was proved to be an effective antagonist against the aggressive soil‐borne pathogen S. sclerotiorum in greenhouse experiments. The main mechanisms involve peptaibiotic metabolite production and mycoparasitism activity. Significance and Impact of the Study: Clonostachys rosea BAFC3874 may be a good fungal biological control agent against S. sclerotiorum. In addition, we were also able to isolate and identify peptaibols, an unusual family of compounds in this genus of fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号