首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   24篇
  195篇
  2023年   1篇
  2021年   10篇
  2020年   13篇
  2019年   10篇
  2018年   15篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   12篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   8篇
  2005年   9篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
81.
It is envisioned that mass algal cultivation for commercial biofuels production will entail the use of large raceway pond systems, which typically have shade‐limited photosynthetic growth within depths of 20–30 cm. The attenuation of light and spectral qualities of red, green, and blue wavelengths in a 20‐cm water column as a function of Chl‐a concentration during exponential and linear phases of growth dynamics for the marine diatom Thalassiosira pseudonana was examined under laboratory conditions. While photosynthetically available radiation (PAR) was in excess throughout the water column during the phase of exponential growth, PAR became rate limiting differently for red, green, and blue wavelengths during the phase of linear growth. The transition from exponential to linear growth occurred at 1–2 mg Chl‐a · L?1, whereby a scalar ~5 μmol photons · m?2 · s?1 at 20‐cm depth was found to occur as would be anticipated having the compensation point for where rates of photosynthesis and respiration are equal. During the phase of linear growth, red wavelengths became increasingly dominant at depth as Chl‐a concentrations increased, being contrary to the optical conditions for those natural bodies of water that forced the evolution of phytoplankton photosynthesis. It is hypothesized this dramatic difference in water column optics between natural and synthetic environments could influence a variety of biological reactions, importantly non‐photochemical quenching capacities, which could negatively impact crop yield.  相似文献   
82.
Parameters of light propagation in plant leaves — absorption and scattering coefficients, asymmetry of scattering — have been estimated on the basis of measured transmission and emission as well as internal fluxes. This estimation has been carried through by solving the inverse problem of the 4-flux radiative transfer — a theory considering forward and backward diffuse as well as directed components of the overall radiation in a multiple scattering sample. Using the gained parameters, light flux gradients in a two-layered model leaf have been calculated at different wavelengths. Monte Carlo simulation of absorption spectra performed with the parameters obtained with this treatment is in a good agreement with experimental spectra, thus substantiating the theory. Parallel calculations with the two-flux (Kubelka-Munk) theory provide an estimation of the accuracy and applicability of this more simple treatment. Calculations have been performed for three different plants: Catalpa bignonioides, Tilia americana and Vitis riparia.  相似文献   
83.
84.
The technique of UV‐light‐assisted immobilization of disulfide containing proteins has been combined with the Fourier‐transforming properties of lenses as well as with a simple millimeter scale feature size spatial mask. The result is a new simple and inexpensive way of creating high‐density protein arrays with feature sizes down to a few hundred nanometers, which represents an improvement of tenfold over existing commercially available high‐density protein arraying methods.  相似文献   
85.
谭毅 《激光生物学报》2011,20(3):382-387
为了研究不同探测距离对光声成像的影响,采用了线性扫描和滤波反投影算法,得出了吸收体间距相对探测距离越大,则成像亮度差异明显,吸收体远离探测器,则重建图像变形很明显.采用了光声信号衰减补偿的方法,对前者重建图像取域值,对后者采用旋转扫描重建,均得到了较好的图像质量.该研究结果对光声成像探测距离的合理选择和成像效果评估具有...  相似文献   
86.
Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment.In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm.The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16  相似文献   
87.
Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.  相似文献   
88.
Quantification of the mucosa oxygenation levels during Endoscopic imaging provides useful physiological/diagnostic information. In this work a method for non‐contact quantification of the oxygen saturation index during Endoscopic imaging using three discrete spectral‐band in the blue, the green, and the red parts of the spectrum (RGB bands) has been investigated. The oxygen saturation index (TOI_rgb) was calculated from the three discrete RGB spectral bands using diffusion approximation modeling and least‐square analysis. A parametric study performed to identify the optimum band width for each of the three spectral bands. The quantification algorithm was applied to in vivo images of the endobronchial mucosa to calculate (TOI_rgb) from selected areas within the image view. The results were compared to that obtained from the full visible spectral (470–700 nm, 10 nm) measurements. The analysis showed that a band width of at least 20 nm in the blue and the green is required to obtain best results. The results showed that the method provides accurate estimation of the oxygenation levels with about 90% accuracy compared to that obtained using the full spectra. The results suggest the potential of quantifying the oxygen saturation levels from the three narrow RGB spectral bands/images. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
89.
This paper deals with the orientational behaviour in the two terrestrial slugs Arion rufus and Deroceras agreste. It presents anatomical details of their eyes and provides an appraisal of the eyes’ optical system. In both species the retinae contain two principal types of cell: photoreceptive and pigmented supportive cells. While only the eye of A. rufus apparently contains neurosecretory neurones, that of D. agreste is the only one equipped with a small additional retina with its own separate lens. Lens shapes vary between ovoid (A. rufus) and spherical (D. agreste). Our results demonstrate that the camera‐type eyes in A. rufus and D. agreste have optical systems that do not allow the production of a sharp image on the retina. The slugs demonstrate negative visually mediated phototactic behaviour, but no polarization sensitivity. Only one aspect of the visual environment, namely the overall distribution of light and dark, seems to be important for these slugs. As the main role of the slugs’ photoreceptors is to monitor environmental brightness and to assist the animal in orientating towards dark places, we conclude that these slugs do not need to perceive sharp images.  相似文献   
90.
Studies in the mammalian neocortex have enabled unprecedented resolution of cortical structure, activity, and response to neurodegenerative insults by repeated, time-lapse in vivo imaging in live rodents. These studies were made possible by straightforward surgical procedures, which enabled optical access for a prolonged period of time without repeat surgical procedures. In contrast, analogous studies of the spinal cord have been previously limited to only a few imaging sessions, each of which required an invasive surgery. As previously described, we have developed a spinal chamber that enables continuous optical access for upwards of 8 weeks, preserves mechanical stability of the spinal column, is easily stabilized externally during imaging, and requires only a single surgery. Here, the design of the spinal chamber with its associated surgical implements is reviewed and the surgical procedure is demonstrated in detail. Briefly, this video will demonstrate the preparation of the surgical area and mouse for surgery, exposure of the spinal vertebra and appropriate tissue debridement, the delivery of the implant and vertebral clamping, the completion of the chamber, the removal of the delivery system, sealing of the skin, and finally, post-operative care. The procedure for chronic in vivo imaging using nonlinear microscopy will also be demonstrated. Finally, outcomes, limitations, typical variability, and a guide for troubleshooting are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号