首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   24篇
  195篇
  2023年   1篇
  2021年   10篇
  2020年   13篇
  2019年   10篇
  2018年   15篇
  2017年   6篇
  2016年   4篇
  2015年   4篇
  2014年   9篇
  2013年   12篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   8篇
  2005年   9篇
  2004年   10篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
31.
Diffuse optical imaging (DOI) techniques provide a wide‐field or macro assessment of the functional tumor state and have shown substantial promise for monitoring treatment efficacy in cancer. Conversely, intravital microscopy provides a high‐resolution view of the tumor state and has played a key role in characterizing treatment response in the preclinical setting. There has been little prior work in investigating how the macro and micro spatial scales can be combined to develop a more comprehensive and translational view of treatment response. To address this, a new multiscale preclinical imaging technique called diffuse and nonlinear imaging (DNI) was developed. DNI combines multiphoton microscopy with spatial frequency domain imaging (SFDI) to provide multiscale data sets of tumor microvascular architecture coregistered within wide‐field hemodynamic maps. A novel method was developed to match the imaging depths of both modalities by utilizing informed SFDI spatial frequency selection. An in vivo DNI study of murine mammary tumors revealed multiscale relationships between tumor oxygen saturation and microvessel diameter, and tumor oxygen saturation and microvessel length (|Pearson's ρ| ≥ 0.5, P < 0.05). Going forward, DNI will be uniquely enabling for the investigation of multiscale relationships in tumors during treatment.   相似文献   
32.
The recent development in this laboratory of an automated data capture system, for refractometric optics on the analytical ultracentrifuge has removed the requirement for tedious and time consuming manual acquisition which had led to a decline in the use of schlieren optics. At the same time this system has increased the amount of data easily available from such an optical system with maintained or increased precision. From the advent of such a system has arisen the need for a package to facilitate the analysis of these data and to extend the range of analytical methods used. Using the improved data sets now available has also enabled us to successfully use methods which have lapsed in popularity over the last two decades. We have also been able to successfully apply radial derivative methods (Bridgman 1942) which have not routinely been applied to the analysis of sedimentation velocity experiments using schlieren optics. In this paper we describe the methods we have so far used to analyse data and present results for previously well defined molecules to demonstrate that the results obtained are reliable. Received: 1 November 1996 / Accepted: 15 January 1997  相似文献   
33.
New techniques able to monitor the maturation of tissue engineered constructs over time are needed for a more efficient control of developmental parameters. Here, a label‐free fluorescence lifetime imaging (FLIm) approach implemented through a single fiber‐optic interface is reported for nondestructive in situ assessment of vascular biomaterials. Recellularization processes of antigen removed bovine pericardium scaffolds with endothelial cells and mesenchymal stem cells were evaluated on the serous and the fibrous sides of the scaffolds, 2 distinct extracellular matrix niches, over the course of a 7 day culture period. Results indicated that fluorescence lifetime successfully report cell presence resolved from extracellular matrix fluorescence. The recellularization process was more rapid on the serous side than on the fibrous side for both cell types, and endothelial cells expanded faster than mesenchymal stem cells on antigen‐removed bovine pericardium. Fiber‐based FLIm has the potential to become a nondestructive tool for the assessment of tissue maturation by allowing in situ imaging of intraluminal vascular biomaterials.   相似文献   
34.
Near‐infrared light allows measuring tissue oxygenation. These measurements relay on oxygenation‐dependent absorption spectral changes. However, the tissue scattering, which is also spectral dependent, introduces an intrinsic error. Most methods focus on the volume reflectance from a semi‐infinite sample. We have proposed examining the full scattering profile (FSP), which is the angular intensity distribution. A point was found, that is, the iso‐path length (IPL) point, which is not dependent on the tissue scattering, and can serve for self‐calibration. This point is geometric dependent, hence in cylindrical tissues depends solely on the diameter. In this work, we examine an elliptic tissue cross section via Monte Carlo simulation. We have found that the IPL point of an elliptic tissue cross section is indifferent to the input illumination orientation. Furthermore, the IPL point is the same as in a circular cross section with a radius equal to the effective ellipse radius. This is despite the fact that the FSPs of the circular and elliptical cross sections are different. Hence, changing the orientation of the input illumination reveals the IPL point. In order to demonstrate this experimentally, the FSPs of a few female fingers were measured at 2 perpendicular orientations. The crossing point between these FSPs was found equivalent to the IPL point of a cylindrical phantom with a radius similar to the effective radius. The findings of this work will allow accurate pulse oximetry assessment of blood saturation.   相似文献   
35.
Globally increasing atmospheric CO2 concentrations are known to affect many aspects of plant physiology and development; however, little attention has been given to leaf and canopy optical properties. Three tropical trees in the Leguminosae, an important canopy tree family in many tropical forests, responded similarly to an experimental doubling of CO2 partial pressure with a 9–23% increase in spectral leaf reflectance to light in the visible (400–700 nm) waveband. Decreased leaf chlorophyll content under elevated CO2 may explain part of the observed increase in reflectance. However, analyses that statistically corrected for chlorophyll content effects on reflectance still indicated a significant CO2 effect. This results, in conjunction with the spectral pattern of the response, suggests that the primary mechanism is increased optical masking of chlorophyll under elevated CO2. The magnitude of the increase in leaf reflectance is sufficient to suggest that increased canopy reflectance of tropical forests (and possibly other terrestrial ecosystems) may be an important negative feedback in the response of global net radiative climate forcing to increasing atmospheric CO2.  相似文献   
36.
Recently there were several publications on the bactericidal effect of visible light, most of them claiming that blue part of the spectrum (400 nm-500 nm) is responsible for killing various pathogens1-5. The phototoxic effect of blue light was suggested to be a result of light-induced reactive oxygen species (ROS) formation by endogenous bacterial photosensitizers which mostly absorb light in the blue region4,6,7. There are also reports of biocidal effect of red and near infra red8 as well as green light9.In the present study, we developed a method that allowed us to characterize the effect of high power green (wavelength of 532 nm) continuous (CW) and pulsed Q-switched (Q-S) light on Pseudomonas aeruginosa. Using this method we also studied the effect of green light combined with antibiotic treatment (gentamycin) on the bacteria viability. P. aeruginosa is a common noscomial opportunistic pathogen causing various diseases. The strain is fairly resistant to various antibiotics and contains many predicted AcrB/Mex-type RND multidrug efflux systems10.The method utilized free-living stationary phase Gram-negative bacteria (P. aeruginosa strain PAO1), grown in Luria Broth (LB) medium exposed to Q-switched and/or CW lasers with and without the addition of the antibiotic gentamycin. Cell viability was determined at different time points. The obtained results showed that laser treatment alone did not reduce cell viability compared to untreated control and that gentamycin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamycin treatment, however, resulted in a synergistic effect and the viability of P. aeruginosa was reduced by 8 log''s.The proposed method can further be implemented via the development of catheter like device capable of injecting an antibiotic solution into the infected organ while simultaneously illuminating the area with light.  相似文献   
37.
结合偏振门技术和米氏散射理论,建立了组织模型的偏振散射差分光谱理论模型.计算分析了粒子群的平均尺寸、相对折射率变化时后向偏振散射差分光谱的特征.结果表明,利用偏振门技术测量的差分光谱主要是来自表层粒子的光信号,偏振散射差分光谱对粒子平均尺寸及相对折射率的变化比较敏感,随着粒子平均尺寸的增加,光谱振荡频率将增加,而随着相对折射率的减小,光谱的振幅减小,且差分光强值减小.该方法对于早期癌症检测具有潜在应用意义.  相似文献   
38.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.   相似文献   
39.
We report the imaging of tendon with Interferometric Second Harmonic Generation microscopy. We observe that the noncentrosymmetric structural organization can be maintained along the fibrillar axis over more than 150 μm, while in the transverse direction it is ~1–15 μm. Those results are explained by modeling tendon as a heterogeneous distribution of noncentrosymmetric nano‐cylinders (collagen fibrils) oriented along the fibrillar axis. The preservation of the noncentrosymmetric structural organization over multiple tens of microns reveals that tendon is made of domains in which the ratio between fibrils with positive and negative polarity is unbalanced. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
40.
This paper presents a novel compact fiberoptic based singlet oxygen near‐infrared luminescence probe coupled to an InGaAs/InP single photon avalanche diode (SPAD) detector. Patterned time gating of the single‐photon detector is used to limit unwanted dark counts and eliminate the strong photosensitizer luminescence background. Singlet oxygen luminescence detection at 1270 nm is confirmed through spectral filtering and lifetime fitting for Rose Bengal in water, and Photofrin in methanol as model photosensitizers. The overall performance, measured by the signal‐to‐noise ratio, improves by a factor of 50 over a previous system that used a fiberoptic‐coupled superconducting nanowire single‐photon detector. The effect of adding light scattering to the photosensitizer is also examined as a first step towards applications in tissue in vivo.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号