首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94829篇
  免费   4844篇
  国内免费   7765篇
  2023年   874篇
  2022年   1342篇
  2021年   1782篇
  2020年   2040篇
  2019年   3375篇
  2018年   2496篇
  2017年   2029篇
  2016年   2446篇
  2015年   3558篇
  2014年   4678篇
  2013年   6518篇
  2012年   3821篇
  2011年   5442篇
  2010年   4156篇
  2009年   4269篇
  2008年   4649篇
  2007年   4808篇
  2006年   4382篇
  2005年   3898篇
  2004年   3241篇
  2003年   2895篇
  2002年   2544篇
  2001年   1986篇
  2000年   1742篇
  1999年   1726篇
  1998年   1677篇
  1997年   1437篇
  1996年   1276篇
  1995年   1536篇
  1994年   1427篇
  1993年   1324篇
  1992年   1327篇
  1991年   1113篇
  1990年   1030篇
  1989年   993篇
  1988年   961篇
  1987年   929篇
  1986年   651篇
  1985年   1105篇
  1984年   1519篇
  1983年   1061篇
  1982年   1438篇
  1981年   1033篇
  1980年   1050篇
  1979年   989篇
  1978年   593篇
  1977年   502篇
  1976年   432篇
  1975年   321篇
  1973年   345篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
M. Wettern  G. Galling 《Planta》1985,166(4):474-482
Isolated thylakoid membranes of Chlamydomonas reinhardi Y-1 with the 32-kDa polypeptide either radioactively labelled or unlabelled were incubated in vitro under various conditions in order to gain information about the degradation of the 32-kDa polypeptide. The degradation was higher at pH 6 compared with pH 7 and pH 8 and exhibited a temperature maximum between 20° C and 25° C (pH 6, pH 8). A light-dependent part of the total degradation was linearly dependent on white light of energy fluence rate between 1 and 20 mW·cm-2 at 25° C and leveled out at higher fluence rates. The degradation in light was only slightly stimulated by ATP but was reduced by 3-(3-4-dichlorophenyl)-1,1-dimethylurea. Adenosine-5-diphosphate and heparin (2.7 mM and 200 g per 100 l, respectively) known to inhibit kinases, caused a 50% decrease in degradation indicating that a phosphorylation step is involved in degradating the 32-kDa polypeptide. Out of various inhibitors specific for different types of proteases, only those for thiol- and endoproteases showed intense effects. These results point to a proteolytic degradation of the 32-kDa polypetide by a thylakoid-membrane-bound thiol-endoprotease. Its activity yields soluble breakdown products with relative molecular masses (Mrs) of 23, 16.5, 11.3 and 10.7 kDa, and these are accumulated in the in-vitro system. Partial proteolytic digestion of thylakoids with Staphylococcus aureus V8 protease results in at least two labelled breakdown products (Mrs 23, and 16.5 kDa). It is assumed that cleaving at identical amino-acid residues of the 32-kDa polypeptide by the thylakoid-membrane-bound thiolendoprotease and the V8 protease results in these two breakdown products. They are derived from subsequent cleavage at amino-acid residues 60–242 and 60–189 according to the deduced protein sequence (Erickson et al. 1984, EMBO J. 3, 2753–2762).Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) - LDS-PAGE lithiumdodecyl sulphate-polyacrylamide gel electrophoresis - M apparent molecular mass - PSII photosystem II - TCA trichloroacetic acid - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
992.
R. S. Poethig  I. M. Sussex 《Planta》1985,165(2):170-184
The cellular parameters of leaf development in tobacco (Nicotiana tabacum L.) have been characterized using clonal analysis, an approach that provides unequivocal evidence of cell lineage. Our results indicate that the tobacco leaf arises from a group of around 100 cells in the shoot apical meristem. Each of these cells contributes to a unique longitudinal section of the axis and transverse section of the lamina. This pattern of cell lincage indicates that primordial cells contribute more or less equally to the growth of the axis, in contrast to the more traditional view of leaf development in which the leaf is pictured as arising from a group of apical initials. Clones induced prior to the initiation of the lamina demonstrate that the subepidermal layer of the lamina arises from at least six files of cells. Submarginal cells usually divide with their spindles parallel to the margin, and therefore contribute relatively little to the transverse expansion of the lamina. During the expansion of the lamina the orientation and frequency of cell division are highly regulated, as is the duration of meristematic growth. Initially, cell division is polarized so as to produce lineages that are at an oblique angle to the midrib; later cell division is in alternating perpendicular planes. The distribution of clones generated by irradiation at various stages of development indicates that cell division ceases at the tip of the leaf when the leaf is about one tenth its final size, and then ceases in progressively more basal regions of the lamina. Variation in the mutation frequency within the lamina reflects variation in the frequency of mitosis. Prior to the mergence of the leaf the frequency of mutation is maximal near the tip of the leaf and extremely low at its base; after emergence, the frequency of mutation increases at the base of the leaf. In any given region of the lamina the frequency of mutation is highest in interveinal regions, and is relatively low near the margin. Thus, both the orientation and frequency of cell division at the leaf margin indicate that this region plays a minor role in the growth of the lamina.Abbreviation MF mutation frequency  相似文献   
993.
The toxicity and growth of Microcystis aeruginosa (UV-006) from the Hartbeespoort Dam, South Africa were investigated at different temperatures and photon fluence rates under laboratory conditions. Cells harvested in late logarithmic growth phase were most toxic when grown at 20°C (LD50) median lethal dose [IP, mouse]=25.4 mg kg-1). Toxicity was markedly reduced at growth temperatures above 28° C. Fluence rate had a smaller effect on the toxicity of the cells, but toxicity tended to be less at the very low and high light fluences. Optimal conditions for growth did not coincide with those for toxin production. Well-aerated cultures of this isolate kept at pH 9.5 by CO2 addition, a temperature of 20–24° C, a fluence rate of 145 mol photons m-2 s-1 and harvested in the late logarithmic growth phase yielded the maximum quantity of toxin.Abbreviation LD50 median lethal dose An abstract of this work, presented as a poster at the IUBS symposium on toxins and lectins, held at the CSIR, Pretoria, South Africa during 1982 was published in S. Afr. J. Sci. 78, 375 (1982)  相似文献   
994.
T. Hayakawa  S. Kanematsu  K. Asada 《Planta》1985,166(1):111-116
Thylakoid-bound superoxide dismutase (SOD; EC 1.15.1.1) was solubilized by Triton X-100 from spinach and purified to a homogeneous state. The molecular weight of thylakoid-bound SOD was 52000; the enzyme was composed of two equal subunits. Its activity was not sensitive to cyanide and hydrogen peroxide, and the isolated SOD contained Mn, but neither Fe nor Cu. Thus, the thylakoid-bound SOD is a Mn-containing enzyme. The subunit molecular weight of thylakoid Mn-SOD is the highest among Mn-SODs isolated so far, a fact which might reflect its binding to the membranes.  相似文献   
995.
Inactivation of the nitrate-reducing system in whole cells of Chlorella vulgaris Bejerinck by darkening, nitrogen starvation, ammonium, or cycloheximide brings cells into a state with a high yield of the millisecond-delayed fluorescence of chlorophyll. Activation of this system by illumination, by adding glucose to dark-adapted cells or nitrate to nitrogen-starved cells brings the cells into a low-yield state. The transitions between the lowand high-yield state induced by alternating light and dark periods are suppressed by tungstate and restored by subsequent molybdate addition. The drop in the delayed-fluorescence yield upon activation of the nitrate-reducing system is associated with the decrease of the amplitude of the electrochemical proton gradient across the thylakoid membrane of the chloroplast, as evidenced by the kinetics of the light-induced adsorption changes at 520 nm. The decrease of the proton gradient may be caused by the electron flow diverting from the cyclic path in photosystem I as a result of the activation of the electron transfer from ferredoxin to nitrite.Abbreviation DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   
996.
J. R. Ellis  R. M. Leech 《Planta》1985,165(1):120-125
As part of an investigation into the control of chloroplast replication the number and size of chloroplasts in mesophyll cells was examined in relation to the size of the cells. In first leaves of Triticum aestivum L. and T. monococcum L. the number of chloroplasts in fully expanded mesophyll cells is positively correlated with the plan area of the cells. The linear relationship between chloroplast number per cell and cell plan area is also consistent over a fivefold range of cell size in isogenic diploid and tetraploid T. monococcum. In T. aestivum the chloroplast number per unit cell plan area varies among cells in relation to the size of the chloroplasts. Those cells containing chloroplasts with a relatively small face area have a correspondingly higher density of chloroplasts, and consequently, the total chloroplast area per unit cell plan area is very similar in all the cells. The results indicate that the proportion of the cell surface area covered by chloroplasts is precisely regulated, and that this is achieved during cell development by growth and replication of the chloroplasts.  相似文献   
997.
The level of endogenous Indol-3-yl-acetic acid (IAA) measured by gas chromatography-mass spectrometry in the elongating zone of intact primary roots of Zea mays showed a good linear correlation with the growth rate of these roots. When they were treated with IAA, their relative elongation decreased; this indicates a supraoptimal content of endogenous IAA. However, the growth of some of the relatively rapidly extending roots was enhanced by such treatment. Interactions between endogenous and applied IAA in the control of root growth are discussed.Abbreviations GC-MS gas chromatography-mass spectrometry - IAA Indol-3-yl-acetic acid  相似文献   
998.
E. Steudle  J. S. Boyer 《Planta》1985,164(2):189-200
Hydraulic resistances to water flow have been determined in the cortex of hypocotyls of growing seedlings of soybean (Glycine max L. Merr. cv. Wayne). Data at the cell level (hydraulic conductivity, Lp; half-time of water exchange, T 1/2; elastic modulus, ; diffusivity for the cell-to-cell pathway, D c) were obtained by the pressure probe, diffusivities for the tissue (D t) by sorption experiments and the hydraulic conductivity of the entire cortex (Lpr) by a new pressure-perfusion technique. For cortical cells in the elongating and mature regions of the hypocotyls T 1/2=0.4–15.1 s, Lp=0.2·10-5–10.0·10-5 cm s-1 bar-1 and D c=0.1·10-6–5.5·10-6 cm2 s-1. Sorption kinetics yielded a tissue diffusivity D t=0.2·10-6–0.8·10-6 cm2 s-1. The sorption kinetics include both cell-wall and cell-to-cell pathways for water transport. By comparing D c and D t, it was concluded that during swelling or shrinking of the tissue and during growth a substantial amount of water moves from cell to cell. The pressure-perfusion technique imposed hydrostatic gradients across the cortex either by manipulating the hydrostatic pressure in the xylem of hypocotyl segments or by forcing water from outside into the xylem. In segments with intact cuticle, the hydraulic conductance of the radial path (Lpr) was a function of the rate of water flow and also of flow direction. In segments without cuticle, Lpr was large (Lpr=2·10-5–20·10-5 cm s-1 bar-1) and exceeded the corticla cell Lp. The results of the pressure-perfusion experiments are not compatible with a cell-to-cell transport and can only the explained by a preferred apoplasmic water movement. A tentative explanation for the differences found in the different types of experiments is that during hydrostatic perfusion the apoplasmic path dominates because of the high hydraulic conductivity of the cell wall or a preferred water movement by film flow in the intercellular space system. For shrinking and swelling experiments and during growth, the films are small and the cell-to-cell path dominates. This could lead to larger gradients in water potential in the tissue than expected from Lpr. It is suggested that the reason for the preference of the cell-to-cell path during swelling and growth is that the solute contribution to the driving force in the apoplast is small, and tensions normally present in the wall prevent sufficiently thick water films from forming. The solute contribution is not very effective because the reflection coefficient of the cell-wall material should be very small for small solutes. The results demonstrate that in plant tissues the relative magnitude of cell-wall versus cell-to-cell transport could dependent on the physical nature of the driving forces (hydrostatic, osmotic) involved.Abbreviations and symbols D c diffusivity of the cell-to-cell pathway - D t diffusivity of the tissue - radial flow rate per cm2 of segment surface - Lp hydraulic conductivity of plasma-membrane - Lpr radial hydraulic conductance of the cortex - T 1/2 half-time of water exchange between cell and surroundings - volumetric elastic modulus  相似文献   
999.
N. Harris  R. R. D. Croy 《Planta》1985,165(4):522-526
The major albumin protein in storage parenchyma tissue of developing peas has been localised at an ultrastructural level by immunocytochemistry. Tissue was fixed in buffered aldehyde and embedded in LR White resin which was polymerised by addition of catalyst. Sections were labelled by the indirect method of absorption of Protein A-gold to specifically bound antibodies. This method gives high levels of specific labelling on sections which retain good ultrastructural preservation and have high contrast after conventional staining. The albumin is located throughout the cytoplasm although no labelling was found associated with the endoplasmic reticulum, Golgi apparatus, vacuoles-protein bodies or other organelles.Abbreviation PMA pea major albumin protein  相似文献   
1000.
Osmotic potentials and individual epidermal cell turgor pressures were measured in the leaves of seedlings of Suaeda maritima growing over a range of salinities. Leaf osmotic potentials were lower (more negative) the higher the salt concentration of the solution and were lowest in the youngest leaves and stem apices, producing a gradient of osmotic potential towards the apex of the plant. Epidermal cell turgor pressures were of the order of 0.25 to 0.3 MPa in the youngest leaves measured, decreasing to under 0.05 MPa for the oldest leaves. This pattern of turgor pressure was largely unaffected by external salinity. Calculation of leaf water potential indicated that the gradient between young leaves and the external medium was not altered by salinity, but with older leaves, however, this gradient diminished from being the same as that for young leaves in the absence of NaCl, to under 30% of this value at 400 mM NaCl. These results are discussed in relation to the growth response of S. maritima.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号