首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18166篇
  免费   1797篇
  国内免费   2567篇
  2024年   89篇
  2023年   427篇
  2022年   479篇
  2021年   646篇
  2020年   726篇
  2019年   859篇
  2018年   717篇
  2017年   850篇
  2016年   804篇
  2015年   779篇
  2014年   978篇
  2013年   1436篇
  2012年   793篇
  2011年   998篇
  2010年   824篇
  2009年   1059篇
  2008年   1143篇
  2007年   1054篇
  2006年   958篇
  2005年   774篇
  2004年   713篇
  2003年   623篇
  2002年   513篇
  2001年   466篇
  2000年   463篇
  1999年   410篇
  1998年   320篇
  1997年   275篇
  1996年   243篇
  1995年   226篇
  1994年   219篇
  1993年   191篇
  1992年   176篇
  1991年   172篇
  1990年   138篇
  1989年   121篇
  1988年   99篇
  1987年   98篇
  1986年   106篇
  1985年   67篇
  1984年   79篇
  1983年   64篇
  1982年   95篇
  1981年   53篇
  1980年   67篇
  1979年   37篇
  1978年   35篇
  1977年   15篇
  1976年   14篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
241.
It is usually thought that unlike terrestrial plants, phytoplankton will not show a significant response to an increase of atmospheric CO2. Here we suggest that this view may be biased by a neglect of the effects of carbon (C) assimilation on the pH and the dissociation of the C species. We show that under eutrophic conditions, productivity may double as a result of doubling of the atmospheric CO2 concentration. Although in practice productivity increase will usually be less, we still predict a productivity increase of up to 40% in marine species with a low affinity for bicarbonate. In eutrophic freshwater systems doubling of atmospheric CO2 may result in an increase of the productivity of more than 50%. Freshwaters with low alkalinity appeared to be very sensitive to atmospheric CO2 elevation. Our results suggest that the aquatic C sink may increase more than expected, and that nuisance phytoplankton blooms may be aggravated at elevated atmospheric CO2 concentrations.  相似文献   
242.
A 2‐year study on epidemic progress of apple scab was conducted at Randwijk, the Netherlands, in 1998 and 1999. The summer epidemic caused by conidia was studied instead of the well‐described spring season epidemic originating from ascospores. The aim was to investigate relationships between disease measurements, i.e. disease incidence and severity measures of apple scab, and their implications for the development of predictive models and threshold levels. The study characterized good relationships between the measurements on cultivar Jonagold using regression analyses in three disease control regimes (untreated, organic and integrated). For fruit quality prediction, the relationship between fruit incidence (If) and leaf incidence (Il) in the organic control regime was given by If = 1.966 + 0.402 × (Il) (R2 = 0.92). As a result of low level of disease in the integrated control regime, shoot incidence (Is), with higher values than leaf incidence, was better suited for prediction. The relationship was given by If = ?0.162 + 0.028 × (Is) (R2 = 0.91). For the integrated control regime, disease threshold levels were constructed for timing of the final fungicide application. If an apple grower wants to keep fruit infection under 1% incidence (harvest scab threshold), the timing of the final fungicide application (action threshold) should correspond to 4% shoot scab incidence at the beginning of August. The results are compared with similar studies and their biological interpretation is discussed.  相似文献   
243.
Changes in vegetation structure and biogeography due to climate change feedback to alter climate by changing fluxes of energy, moisture, and momentum between land and atmosphere. While the current class of land process models used with climate models parameterizes these fluxes in detail, these models prescribe surface vegetation and leaf area from data sets. In this paper, we describe an approach in which ecological concepts from a global vegetation dynamics model are added to the land component of a climate model to grow plants interactively. The vegetation dynamics model is the Lund–Potsdam–Jena (LPJ) dynamic global vegetation model. The land model is the National Center for Atmospheric Research (NCAR) Land Surface Model (LSM). Vegetation is defined in terms of plant functional types. Each plant functional type is represented by an individual plant with the average biomass, crown area, height, and stem diameter (trees only) of its population, by the number of individuals in the population, and by the fractional cover in the grid cell. Three time‐scales (minutes, days, and years) govern the processes. Energy fluxes, the hydrologic cycle, and carbon assimilation, core processes in LSM, occur at a 20 min time step. Instantaneous net assimilated carbon is accumulated annually to update vegetation once a year. This is carried out with the addition of establishment, resource competition, growth, mortality, and fire parameterizations from LPJ. The leaf area index is updated daily based on prevailing environmental conditions, but the maximum value depends on the annual vegetation dynamics. The coupling approach is successful. The model simulates global biogeography, net primary production, and dynamics of tundra, boreal forest, northern hardwood forest, tropical rainforest, and savanna ecosystems, which are consistent with observations. This suggests that the model can be used with a climate model to study biogeophysical feedbacks in the climate system related to vegetation dynamics.  相似文献   
244.
We monitored the haul-out behavior of 68 radio-tagged harbor seals ( Phoca vitulina ) during the molt season at two Alaskan haul-out sites (Grand Island, August-September 1994; Nanvak Bay, August-September 2000). For each site, we created a statistical model of the proportion of seals hauled out as a function of date, time of day, tide, and weather covariates. Using these models, we identified the conditions that would result in the greatest proportion of seals hauled out. Although those "ideal conditions" differed between sites, the proportion of seals predicted to be hauled out under those conditions was very similar (81.3% for Grand Island and 85.7% for Nanvak Bay). The similar estimates for both sites suggest that haul-out proportions under locally ideal conditions may be constant between years and geographic regions, at least during the molt season.  相似文献   
245.
246.
Mercury evaporation from undisturbed iron‐humus podzol lysimeters was measured over 3 months after treatment with HgCl2 spiked with radioactive 203Hg. The relative evaporation rate from HgCl2 treated soils followed the sum of two exponential functions. Because evaporation asymptotically approaches zero with time, the integral of the fit curve represents the evaporative loss in percent of atmospheric deposition. For the soil investigated, about 5% of atmospheric Hg deposition was reemitted into the atmosphere. It is hypothesized that mercury evaporation can decrease the leaching of mercury in and from soil significantly; this effect is probably increasing with decreasing rain acidity or soil acidity. Mercury deposited as soluble salt remains susceptible to reemission to air for 300 d after incorporation into the soil matrix. Indications are found that Hg evaporation from soils in geological background areas predominantly derives from recent atmospheric Hg deposition and not from geological sources.  相似文献   
247.
Analyses of spatial patterns and population processes of clonal plants   总被引:1,自引:0,他引:1  
The nonrandom spatial structure of terrestrial plants is formed by ecological interactions and reproduction with a limited dispersal range, and in turn this may strongly affect population dynamics and population genetics. The traditional method of modelling in population ecology is either to neglect spatial pattern (e.g. in transition matrix models) or to do straightforward computer simulation. We review here three analytical mothods to deal with plant populations in a lattice-structured habitat, which propagate both by seeds that scatter over the whole habitat and by vegetative reproduction (producing runners, rhizomes, etc.) to neighboring vacant sites. [1]Dynamics of global and local densities: Dynamical equations of population density considering nearest-neighbor correlation (spatial clumping) are developed as the joint dynamics of global average density and local density (comparable to mean crowding) based onpair approximation. If there is a linear trade-off between seed production and vegetative reproduction, the equilibrium abundance of the population may be maximized by engaging both means of reproduction. This result is accurately predicted by the pair approximation method, but not by mean-field approximation (neglect of spatial structure). [2]Cluster size distributions: Using global and local densities obtained by pair approximation, we predicted cluster size distribution, i.e. the number of clusters of occupied sites of various sizes. [3]Clonal identity probability decreasing with distance: Multi-locus measurement of allozymes or other neutral molecular markers tells us whether or not a given pair of individuals belong to the same clone. From the pattern of clonal identity probability decreasing with the distance between ramets, we can estimate the relative importance of two modes of reproduction: vegetative propagation and sexual seed production.  相似文献   
248.
The host-parasite or host-pathogen system was analyzed from dynamical and evolutionary viewpoints using simple mathematical models incorporating vertical transmission, immunity and its loss. We first analyzed a model without density regulation of host population. In the analysis on dynamics, the condition for the pathogen to work as a density regulating factor was obtained. In the analysis on evolution, criteria for the evolution of host and pathogen were proposed. These criteria implies that the evolution of hosts should result in an increase in infected host density, whereas the evolution of pathogens a decrease in susceptible host density. The direction of evolution at some parameters of host and that of pathogen were examined when the parameters were independently and freely changeable. Among the parameters, only reduction in additional mortality due to infection was the evolutionary trend common to both host and pathogen. In all the other parameters examined, trend of evolution predicted in host is reversed in pathogen. We then analyzed whether the obtained criteria still hold in models with density regulation of hosts. Using randomly generated parameter sets, we obtained the result that the criteria should hold very likely though they do not always hold. We discussed evolution of virulence when there is a constraint between the traits.  相似文献   
249.
通过对固定化Gluconobacter oxydansBacillus cereus的活细胞系统的研究,提出了固定化细胞不均匀分布模型,将此类分布与均匀分布(最劣分布模型)进行比较,分析了它们对固定化细胞内部的基质浓度分布、有效速率因子和选择率的影响,指出不均匀分布和均匀分布对于该固定化活细胞系统的动力学行为无显著影响,这一模型分析结果在实验中得以验证。通过无因次化分析,建立了适用于固定化生物催化剂动力学研究的模型方法。  相似文献   
250.
应用FIA型微生物传感器测定谷氨酸含量的研究   总被引:1,自引:0,他引:1  
目前应用酶或微生物细胞作为分子识别元件构建生物传感器测定谷氨酸含量的研究引起了广泛的兴趣,并陆续有实例报道。在这些报道中人们依据不同的酶催反应选择相应的离子选择性电极,如CO2电极、NH4+电极等,而测量对象有直接的测定谷氨酸,也有测定谷氨酸单钠的间接测定法。本文选用了可固定大量细胞的固定化细胞柱与流动注入法相结合的测量方法,并根据细胞柱的动力学模型分析动态响应曲线,计算测量结果,提高了测量精度,扩大了测量范围。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号