首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1905篇
  免费   77篇
  国内免费   35篇
  2023年   53篇
  2022年   85篇
  2021年   100篇
  2020年   65篇
  2019年   82篇
  2018年   61篇
  2017年   34篇
  2016年   32篇
  2015年   38篇
  2014年   61篇
  2013年   69篇
  2012年   26篇
  2011年   30篇
  2010年   53篇
  2009年   58篇
  2008年   57篇
  2007年   68篇
  2006年   69篇
  2005年   65篇
  2004年   42篇
  2003年   35篇
  2002年   39篇
  2001年   35篇
  2000年   25篇
  1999年   24篇
  1998年   36篇
  1997年   30篇
  1996年   17篇
  1995年   35篇
  1994年   25篇
  1993年   36篇
  1992年   29篇
  1991年   30篇
  1990年   35篇
  1989年   34篇
  1988年   35篇
  1987年   43篇
  1986年   35篇
  1985年   30篇
  1984年   39篇
  1983年   26篇
  1982年   39篇
  1981年   29篇
  1980年   19篇
  1979年   20篇
  1978年   12篇
  1977年   15篇
  1976年   15篇
  1973年   15篇
  1972年   7篇
排序方式: 共有2017条查询结果,搜索用时 15 毫秒
91.
Membrane transport carrier function, its regulation and coupling to metabolism, can be selectively investigated dissociated from metabolism and in the presence of a defined electrochemical ion gradient driving force, using the single internal compartment system provided by vesiculated surface membranes. Vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated transport of several neutral amino acids into an osmotically-sensitive intravesicular space without detectable metabolic conversion of substrate. When a Na+ gradient, external Na+ > internal Na+, was artifically imposed across vesicle membranes, accumulation of several neutral amino acids achieved apparent intravesicular concentrations 6- to 9-fold above their external concentrations. Na+-stimulated alanine transport activity accompanied plasma membrane material during subcellular fractionation procedures. Competitive interactions among several neutral amino acids for Na+-stimulated transport into vesicles and inactivation studies indicated that at least 3 separate transport systems with specificity properties previously defined for neutral amino acid transport in Ehrlich ascites cells were functional in vesicles from mouse fibroblasts: the A system, the L system and a glycine transport system. The pH profiles and apparent Km values for alanine and 2-aminoisobutyric acid transport into vesicles were those expected of components of the corresponding cellular uptake system. Several observations indicated that both a Na+ chemical concentration gradient and an electrical membrane potential contribute to the total driving force for active amino acid transport via the A system and the glycine system. Both the initial rate and quasi-steady-state of accumulation were stimulated as a function of increasing concentrations of Na+ applied as a gradient (external > internal) across the membrane. This stimulation was independent of endogenous Na+, K+-ATPase activity in vesicles and was diminished by monensin or by preincubation of vesicles with Na+. The apparent Km for transport of alanine and 2-aminoisobutyric acid was decreased as a function of Na+ concentration. Similarly, in the presence of a standard initial Na+ gradient, quasi-steady-state alanine accumulation in vesicles increased as a function of increasing magnitudes of interior-negative membrane potential imposed across the membrane by means of K+ diffusion potentials (internal > external) in the presence of valinomycin; the magnitude of this electrical component was estimated by the apparent distributions of the freely permeant lipophilic cation triphenylme thylphosphonium ion. Alanine transport stimulation by charge asymmetry required Na+ and was blocked by the further addition of either nigericin or external K+. As a corollary, Na+-stimulated alanine transport was associated with an apparent depolarization, detectable as an increased labeled thiocyanate accumulation. Permeant anions stimulated Na+-coupled active transport of these amino acids but did not affect Na+-independent transport. Translocation of K+, H+, or anions did not appear to be directly involved in this transport mechanism. These characteristics support an electrogenic mechanism in which amino acid translocation is coupled t o an electrochemical Na+ gradient by formation of a positively charged complex, stoichiometry unspecified, of Na+, amino acid, and membrane component. Functional changes expressed in isolated membranes were observed t o accompany a change in cellular proliferative state or viral transformation. Vesicles from Simian virus 40-transformed cells exhibited an increased Vmax of Na+-stimulated 2-aminoisobutyric acid transport, as well as an increased capacity for steady-state accumulation of amino acids in response t o a standard Na+ gradient, relative t o vesicles from nontransformed cells. Density-inhibition of nontransformed cells was associated with a marked decrease in these parameters assayed in vesicles. Several possibilities for regulatory interactions involving gradient-coupled transport systems are discussed.  相似文献   
92.
Evidence is presented that Polian vesicles of the sea cucumber, Holothuria cinerascens, a member of an echinoderm class considered close to the vertebrate evolutionary line, are organs of inflammatory (including immunologic) responsiveness. As such, they might represent a rudimentary beginning of what later evolved into the vertebrate lymphoreticular system.  相似文献   
93.
Voltage-dependent orientation of membrane proteins   总被引:1,自引:0,他引:1  
In order to study the influence of electrostatic forces on the disposition of proteins in membranes, we have examined the interaction of a receptor protein and of a membrane-active peptide with black lipid membranes. In the first study we show that the hepatic asialoglycoprotein receptor can insert spontaneously into lipid bilayers from the aqueous medium. Under the influence of a trans-positive membrane potential, the receptor, a negatively charged protein, appears to change its disposition with respect to the membrane. In the second study we consider melittin, an amphipathic peptide containing a generally hydrophobic stretch of 19 amino acids followed by a cluster of four positively charged residues at the carboxy terminus. The hydrophobic region contains two positively charged residues. In response to trans-negative electrical potential, melittin appears to assume a transbilayer position. These findings indicate that electrostatic forces can influence the disposition, and perhaps the orientation, of membrane proteins. Given the inside-negative potential of most or all cells, we would expect transmembrane proteins to have clusters of positively charged residues adjacent to the cytoplasmic ends of their hydrophobic transmembrane segments, and clusters of negatively charged residues just to the extracytoplasmic side. This expectation has been borne out by examination of the few transmembrane proteins for which there is sufficient information on both sequence and orientation. Surface and dipole potentials may similarly affect the orientation of membrane proteins.  相似文献   
94.
Summary Kinetic data in (brush-border) membrane vesicles which rely on the validity of the initial rate assumption for their interpretation and depend on tracer flux studies using the rapid filtration technique for their experimental measurement have been limited to some extent by the absence of techniques that would allow for real-time data analysis. In this paper, we report on our successful design of a fast sampling, rapid filtration apparatus (FSRFA) which seems to fill up this technical gap since showing the following characteristics: (i) rapid injection (5 msec) and mixing (less than 100 msec) of small amounts of vesicles (10–40 l) with an incubation medium (0.2–1.0 ml); (ii) fast (20 to 80 msec depending on the sample volume) and multiple (up to 18 samples at a maximal rate of 4/sec) sampling of the uptake mixture followed by rapid quenching in the stop solution (approximately 5 msec) according to a predetermined time schedule (any time combination from 0.25 to 9999 sec); and (iii) fast, automated, and sampling-synchronized filtration and washings of the quenched uptake medium (only 15–20 sec are necessary for the first filtration followed by two washings and extra filtrations). As demonstrated using adult human jejunal brush-border membrane vesicles and Na+-d-glucose cotransport as models, the FSRFA accurately reproduces the manual aspects of the rapid filtration technique while allowing for very precise initial rate determinations. Moreover, the FSRFA has also been designed to provide as much versatility as possible and, in its present version, allows for a very precise control of the incubation temperature and also permits a few efflux protocols to be performed. Finally, its modular design, which separates the fast sampling unit from the rapid filtration device, should help in extending its use to fields other than transport measurement.  相似文献   
95.
Summary The effects of diltiazem, a drug which inhibits the calcium channels in cardiac muscle as well as the light-sensitive channels in photoreceptor cells, were studied on ionic fluxes in both membrane and intact cell preparations. Diltiazem nonselectively increased the ionic permeability to both anions and cations in photoreceptor rod outer segment and synaptic membrane vesicles as well as in intact erythrocytes. Under our conditions, the estimated threshold for the diltiazem effect varied between 12.5 and 200 m. In each case the concentration dependence exhibited the sigmoidal shape characteristic of positive cooperativity. The effect of diltiazem on ionic fluxes from phospholipid vesicles were strongly influenced by phospholipid composition and membrane charge. By contrast, diltiazem inhibited the efflux of86Rb from photoreceptor cells of intact aspartate-isolated retina, an effect opposite to that of diltiazem on ionic permeabilities in photoreceptor membrane vesicle preparations.These data raise serious doubts on the specificity of diltiazem as a calcium channel blocker or as a cGMP channel blocker when used at concentrations higher than 10 m.  相似文献   
96.
The structure of the vacuolar ATPase from mesophyll tonoplasts of Mesembryanthemum crystallinum has been studied by electron microscopy using negatively stained specimens of membrane-bound and detergent-solubilized ATPase molecules. We observed a high density of particles on the surface of tonoplast vesicles and “head and stalk” structures on the edge of the membrane, similar to the F0F1-ATPases of mitochondrial and chloroplast membranes. The staining conditions, which are often critical for such small objects, were improved by using methylamine tungstate as negative stain for the membrane-bound ATPase. Compared to other staining solutions generally applied, dissociation of the F1-like enzyme complex from the membrane was best prevented and structural damage of the vesicles was least observed with methylamine tungstate. In freeze-fracture electron microscopy of tonoplast vesicles, where dissociation never occurs since no detergent is used, we also observed “head and stalk” structures on the edge of the membranes, beside many particles on the fracture faces. The detergent-solubilized ATPase forms string-like structures, caused by the aggregation of the hydrophobic membrane-embedded F0-like part of the enzyme. After negative staining the F1-like enzyme complex is arranged alternately along both sides of the string and connected by a narrow stalk.  相似文献   
97.
Summary The characteristics of uridine transport were studied in basolateral plasma membrane vesicles isolated from rat liver. Uridine was not metabolized under transport measurement conditions and was taken up into an osmotically active space with no significant binding of uridine to the membrane vesicles. Uridine uptake was sodium dependent, showing no significant stimulation by other monovalent cations. Kinetic analysis of the sodium-dependent component showed a single system with Michaelis-Menten kinetics. Parameter values were K M 8.9 m and V max 0.57 pmol/mg prot/sec. Uridine transport proved to be electrogenic, since, firstly, the Hill plot of the kinetic data suggested a 1 uridine: 1 Na+ stoichiometry, secondly, valinomycin enhanced basal uridine uptake rates and, thirdly, the permeant nature of the Na+ counterions determined uridine transport rates (SCN > NO 3 > Cl > SO 4 2– ). Other purines and pyrimidines cis-inhibited and trans-stimulated uridine uptake.This work has been partially supported by grant PM90-0162 from D.G.I.C.Y.T. (Ministerio de Educación y Ciencia, Spain). B.R.-M. is a research fellow supported by the Nestlé Nutrition Research Grant Programme.  相似文献   
98.
Two properties of phytotropins, their ability to bind to 1-N-naphthylphthalamic acid (NPA) receptors located on microsomal vesicles isolated from Cucurbita pepo L. hypocotyls, and to stimulate auxin (indol-3-yl acetic acid, IAA) accumulation into such vesicles by blocking its efflux from them, were assessed in double labelling experiments using [2,3,4,5-3H]1-N-naphthylphthalamic acid and 3-indolyl-[2-14C]acetic acid. Two sites of differing affinities and activities on IAA accumulation were found. 1-N-Naphthylphthalamic acid was found to have high affinity (KD at 10-8mol·l-1) for one site and low affinity (KD at 10-6 mol·l-1) for the other, whereas 2-(1-pyrenoyl)benzoic acid displaced NPA with high efficiency (KD below 10-8 mol·l-1) from both sites. Other phytotropins had intermediate affinities for either site. Occupation of the site with low affinity for NPA stimulated auxin accumulation, while occupation of the high-affinity site with a phytotropin did not interfere with auxin accumulation into vesicles.Abbreviations IAA Indol-3-yl acetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - TIBA 2,3,5-triiodobenzoic acid W.M. was supported in part by an allowance from CSIRO and in part by a fellowship of the Deutsche Forschungsgemeinschaft; he acknowledges the friendly hospitality of the CSIRO Division of Plant Industry. The authors thank R. Hertel (Freiburg) for valuable discussion.  相似文献   
99.
ATP-dependent Sr2+ transport was examined in vitro using basolateral membrane (BLM) vesicles isolated from rat renal cortex to clarify the discrimination mechanisms between strontium (Sr) and calcium (Ca) in renal tubules during reabsorption. ATP-dependent Sr2+ uptake and Ca2+ uptake were observed in renal BLM vesicles and were inhibited by vanadate. Hill plots indicate similar kinetic behavior for Ca2+ and Sr2+ uptake. The apparentK m andV max of ATP-dependent Sr2+ uptake were both higher than those for Ca2+ uptake. ATP-dependent Sr2+ uptake by BLM vesicles diminished in the presence of 0.1 μM Ca2+ and was more markedly inhibited by 1 μM Ca2+. Hill plots of Sr2+ uptake data with and without 0.1 μM Ca2+ showed that the cooperative behavior of Sr2+ uptake was not changed by Ca2+. In the presence of 0.1 μM Ca2+, the affinity of the transport system for Sr2+ and the velocity of Sr2+ uptake in the BLM were both decreased. However, the rate of Ca2+ uptake was not diminished by Sr2+ concentrations of <1.6 μM. These results suggest that Ca2+ is preferentially transported in the renal cortex BLM when Ca2+ and Sr2+ are present at the same time.  相似文献   
100.
Using immunofluorescence and cytofluorimetric scanning (CFS), we investigated the short-term (1-7 days) influence of lower thoracic spinal cord transection on lumbar motor neurons. The content of calcitonin gene-related peptide- (CGRP) like immunoreactivity (LI), chromogranin A (Chr A) -LI, vasoactive intestinal polypeptide (VIP)-LI, Syn I-LI, and synaptophysin (p38)-LI in motor perikarya, and the anterograde and retrograde axonal transport of these substances in the sciatic nerve, were studied in nerve crush (6 h) experiments. During the week after transection, CGRP-LI in perikarya decreased, whereas Chr A-LI increased. VIP-LI, co-localized with Chr A-LI in motor perikarya, did not change after transection. The antero- and retrograde transport of CGRP-LI in the sciatic nerve, occurring in both motor and sensory axons, appeared unchanged in cytofluorimetric scanning (CFS) graphs, but the microscopical picture clearly showed that large motor axons had a decreased content of CGRP-LI at 3 and 7 days posttransection, whereas thinner axons were unchanged in fluorescence intensity. The anterograde transport of Chr A-LI, present in both motor and postganglionic adrenergic axons, was decreased 1 and 3 days after lesion, but returned to control by day 7. There was a marked decrease in anterograde transport of VIP-LI, present mainly in postganglionic sympathetic axons, at day 3, but at 7 days transport was normal. The amounts of transported p38, the synaptic vesicle marker, were in the normal range during the whole period. Syn I-LI accumulation anterogradely was somewhat decreased at 3 and 7 days posttransection, and at 1 day the retrograde accumulation was significantly increased. The results suggest that removal of supraspinal input to intact lower motor neurons causes alterations in metabolism and axonal transport of organelle-associated substances, partly probably related to the complex pattern of transmitter leakage from degenerating, descending nerve terminals. These alterations appear to take place also in postganglionic sympathetic neurons in the sciatic nerve, that originate in the lumbar sympathetic chain. © 1992 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号