首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   16篇
  国内免费   15篇
  263篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   20篇
  2007年   14篇
  2006年   16篇
  2005年   20篇
  2004年   10篇
  2003年   11篇
  2002年   11篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   4篇
  1995年   9篇
  1994年   5篇
  1993年   4篇
  1992年   9篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1973年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
51.
 介绍了热扩散式液流探针的工作原理及利用液流探针测定树木边材液流速率的方法。利用边材液流探针和多种气象因子传感器及数据采集系统组成的微型气象站,通过对北京西山地区油松(Pinus tabulaeformis)、栓皮栎(Quercus variabilis)混交林林分平均木树干边材液流速率及风速、有效辐射和空气温度、空气相对湿度的日变化和连日变化的测定和分析,揭示了5月干旱季节两树种蒸腾耗水的日变化和连日变化规律,以及栓皮栎树干基部和树冠大枝边材液流的差异,并进行了理论推导,同时分析了液流速率的波动规律与主要气象因素波动的相关性。  相似文献   
52.
Brassica rapa L. plants were grown hydroponically for 5 or 6 weeks at 20°C and then half batches of plants were transferred to tanks in which the root temperature was lowered decrementally over 1 h to 7°C. Changes in nitrate uptake rate (NUR) and nitrate transfer from roots were studied in relation to transpiration and root pressure xylem exudation flow rates over a 48- or 72-h period. The response of plants following the root temperature decrease was biphasic. During phase 1, NUR and water and solute flow rates through the root decreased sharply. Coping mechanisms came into operation during phase 2, and tended to offset the effects of low temperature. The 3-h cold-treated roots exhibited a very low NUR but 48-h cold-treated roots partly recovered their ability to absorb nitrate. Transpiration rate decreased more slowly (during 24 h) than both root xylem exudation and parameters of root conductivity (during 6 h). Beyond these respective times, transpiration rate was balanced while root xylem exudation clearly increased, but without returning to the level of control plants. Nitrate transfer to the root xylem was strongly and rapidly affected by low root temperature, but the subsequent readjustment was such that no or little difference compared with the control was apparent after 48 h. Water and solute flows were strongly decreased when nitrate was replaced by chloride in the culture solution during exudation sampling. The major role of nitrate in root hydraulic conductivity and root xylem exudation is discussed.  相似文献   
53.
The nature and quantity of low-molecular organic acids (LOAs) exuded by the roots of nine species of calcifuge and nine species of acidifuge wild plants from northern Europe were determined by ion chromatography. Particular attention was paid to differences between the calcifuge and the acidifuge species in the proportions of different LOAs in their root exudates. Great differences in mol% root exudation between the calcifuge and the acidifuge species were found in some acids. The calcifuge species exuded more acetic acid, the acidifuge species more oxalic acid and much more citric acid. In three calcifuge species, however, root exudation of oxalic acid was appreciable, whereas acetic acid exudation was low in these species. The phosphate- and Fe-solubilizing ability of eight LOAs in a rhizosphere limestone soil was also tested. Oxalic acid was the most efficient phosphate solubilizer and citric acid, by far, the most efficient Fe-solubilizer at the concentration (10 mM) tested. It might be hypothesized that acidifuge species use oxalate to solubilize phosphate and citrate to solubilize Fe, in limestone soil. The inability of calcifuge species to grow in limestone soil might, therefore, be due to low root exudation of these acids and, as a result, inability to solubilize phosphate and Fe in limestone soil.  相似文献   
54.
Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m?2 a?1). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g?1 root biomass h?1), II (μg C cm?1 root length h?1) and III (μg C cm?2 root area h?1) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root‐derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R2 = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root‐microbe interactions influence soil organic matter decomposition and N cycling should be incorporated into climate‐carbon cycle models to determine reliable estimates of long‐term C storage in forests.  相似文献   
55.
在6、7年生三倍体毛白杨(triploid Populus tomentosa)纸浆林中研究了地下滴灌(SDI)下不同土壤水势(-25、-50、-75kPa,即灌溉起始阈值)对林木生长及生理特征的影响。结果表明:与不灌溉(CK)相比,SDI使6、7年生林分的生产力分别平均提高24%和28%;其中,-25 kPa使6年生林分的生产力达到39.90 m3hm-2a-1,较CK极显著提高43.5%(P<0.01)。各水势处理间,-25 kPa的生产力在林分6年生时分别较-50和-75 kPa极显著提高20%和31%(P<0.01),在7年生时分别提高13%和14%(P>0.05)。能在毛白杨速生期内(4—7月)大幅提高土壤含水率(20和50 cm处分别平均提高35%和27%)、树干日平均液流速率(46%,SFmean)、黎明前叶水势(41%,ψpd)是SDI促进林木生长的重要机制。灌溉起始水势阈值的差异对毛白杨SFmean和ψpd无显著影响(P>0.05)。3个水势处理中,-25 kPa的平均SFmean和ψpd均最高,且其能使根系活动剧烈的表土层(0—20cm)的水分有效性有最大幅的提高,这可能是其对林木生长有最大促进作用的主要原因。综上,应在毛白杨纸浆林培育中大力推广SDI,并在应用时可将距滴头10cm、地下20 cm处的土壤水势达到-25 kPa作为灌溉起始阈值。另外,在与试验地环境相似地区栽植毛白杨时,应于4—7月灌溉,8—10月一般可不灌溉。  相似文献   
56.
Root exudates influence significantly physical, chemical and biological characteristics of rhizosphere soil. Their qualitative and quantitative composition is affected by environmental factors such as pH, soil type, oxygen status, light intensity, soil temperature, plant growth, nutrient availability and microorganisms. The aim of the present study was to assess the influence of growth substrate and plant age on the release of carboxylates from Lupinus albus L. and Brassica napus L.Both plant species were studied in continuously percolated microcosms filled with either sand, soil or sand + soil (1:1) mixture. Soil solution was collected every week at 7, 14, 21, 28 and 35 days after planting (DAP). Carboxylate concentrations were determined by reversed-phase liquid chromatography - electrospray ionization - time of flight mass spectrometry (LC-ESI-TOFMS).Oxalate, citrate, succinate, malate and maleate were detected in soil solutions of both plant species. Their concentrations were correlated with the physiological status of the plant and the growth substrate. Oxalate was the predominant carboxylate detected within the soil solution of B. napus plants while oxalate and citrate were the predominant ones found in the soil solutions of L. albus plants.The sampling determination of carboxylates released by plant roots with continuous percolation systems seems to be promising as it is a non-destructive method and allows sampling and determination of soluble low molecular weight organic compounds derived from root exudation as well as the concentration of soluble nutrients, which both might reflect the nutritional status of plants.  相似文献   
57.
The paper presents the results of amino acid analyses in xylem sap during leaf regrowth of ryegrass plants defoliated firstly at the 8th and secondly at the 12th week of culture. The free amino acid composition of leaves, stubble and roots was also determined and some of the results are reported. Prior to defoliation, xylem sap contained a high proportion of amides, particularly glutamine. During regrowth after defoliation, the proportion of asparagine in the xylem sap increased until the third day when the highest ratios of asparagine/glutamine appeared. The results are compared with relative amounts of free amino acids in the different plant parts and discussed in relation to source-sink nitrogen transfer.  相似文献   
58.
A microcosm is described in which root exudation may be estimated in the presence of microorganisms. Ryegrass seedlings are grown in microcosms in which roots were spatially separated from a microbial inoculant by a Millipore membrane. Seedlings grown in the microcosms were labelled with [14C]-CO2, and the fate of the label within the plant and rhizosphere was determined. Inoculation of the microcosms with Cladosporium resinae increased net fixation of the [14C] label compared to plants grown under sterile conditions. Inoculation also increased root exudation. The use of the microcosm was illustrated and its applications discussed.  相似文献   
59.
Water extract of stinging nettle (Urtica dioica) has a growth stimulating effect on plants. This investigation elucidated effects of nettle water on uptake and transport of N, P and K. Tomato plants (Solanum lycopersicum L. cv. Dansk export) were grown in sand culture 6–8 weeks. Plants were supplied with nettle water and nutrient solution was used as a control medium. Uptake and transport of N, P and K+ were determined with isotopes (15N,32P and86Rb+ as a tracer for K+) and ion-selective electrodes and in exudation experiments. A 15% higher uptake of nitrogen (15N assay) was found after nettle water treatment compared with the nutrient solution control. The total amount of nitrogen was also higher in plants cultivated with nettle water. Transport of inorganic and organic nitrogen, measured in exudation experiments, was more than 50% higher for plants supplied with nettle water compared with plants supplied with nutrient solution. In contrast, nettle water had no effect on uptake, transport or total amount of phosphorus and potassium in the plants. Experiments in hydroculture showed that nettle water had a strong pH-elevating effect. Uptake of NH 4 + was strongly stimulated by nettle water compared with nutrient solution. By holding pH at a constant level during the uptake period for 6 h, the uptake of NH 4 + from nettle water was significantly lower when no adjustment of pH was made. Consequently a good deal of the NH 4 + uptake enhancement by nettle water could be explained by pH-stimulation. Assays with the uncoupler/inhibitor 2,4-dinitrophenol (DNP) and dichlorophenyl-dimethyl-urea (DCMU) showed that uptake of nitrogen from nettle water was less metabolically-linked than uptake from a corresponding nutrient solution. All together, nettle water seems to stimulate the uptake of nitrogen, but not phosphorus or potassium.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号