首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   22篇
  国内免费   58篇
  462篇
  2023年   4篇
  2022年   2篇
  2021年   7篇
  2020年   7篇
  2019年   15篇
  2018年   8篇
  2017年   17篇
  2016年   15篇
  2015年   16篇
  2014年   11篇
  2013年   28篇
  2012年   9篇
  2011年   21篇
  2010年   11篇
  2009年   12篇
  2008年   25篇
  2007年   21篇
  2006年   19篇
  2005年   19篇
  2004年   12篇
  2003年   25篇
  2002年   14篇
  2001年   20篇
  2000年   12篇
  1999年   8篇
  1997年   15篇
  1996年   14篇
  1995年   9篇
  1994年   5篇
  1993年   10篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   12篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1980年   4篇
排序方式: 共有462条查询结果,搜索用时 15 毫秒
371.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   
372.
浑善达克沙地南缘人工固沙植被水分利用特征   总被引:2,自引:0,他引:2  
探讨浑善达克沙地典型乔木青杨和灌木黄柳不同季节的水分利用特征,可为沙地人工防护林生态系统的结构优化提供理论依据.采集研究区大气降水、土壤水、地下水和典型人工固沙植被的茎干水,利用氢氧稳定同位素技术,揭示不同水源δD-δ18O值的分布特征,运用多源线性混合模型计算出各潜在水源对2种植被水的贡献率.结果 表明:研究区大气降...  相似文献   
373.
Tamarix spp. removal has been proposed to salvage water and allow native vegetation to recolonize western U.S. riparian corridors. We conducted wide‐area studies on the Lower Colorado River to answer some of the scientific questions about Tamarix water use and the consequences of removal, combining ground surveys with remote sensing methods. Tamarix stands had moderate rates of evapotranspiration (ET), based on remote sensing estimates, averaging 1.1 m/yr, similar to rates determined for other locations on the river and other rivers. Leaf area index values were also moderate, and stands were relatively open, with areas of bare soil interspersed within stands. At three Tamarix sites in the Cibola National Wildlife Refuge, groundwater salinity at the site nearest to the river (200 m) was relatively low (circa 2,250 mg/L) and was within 3 m of the surface. However, 750 and 1,500 m from the river, the groundwater salinity was 5,000–10,000 mg/L due to removal of water by the Tamarix stands. Despite the high groundwater salinity, the sites away from the river did not have saline surface soils. Only 1% of the mean annual river flow is lost to Tamarix ET on the Lower Colorado River in the United States, and the opportunities for water salvage through Tamarix removal are constrained by its modest ET rates. A possible alternative to Tamarix removal is to intersperse native plants among the stands to improve the habitat value of the riparian zone.  相似文献   
374.
Background: Climate warming has been causing an increase in tall shrub cover around the Arctic, however, mammalian herbivory has been shown to inhibit shrub expansion. Though the effect of reindeer (Rangifer tarandus) and many other mammals has been widely studied in this context, the role of the mountain hare (Lepus timidus) in subarctic Scandinavia remains unknown.

Aims: To quantify browsing from mountain hare and reindeer on tall shrubs in different vegetation types and to investigate differences in shrub preference between the two.

Methods: In the summers of 2013 and 2014, we counted signs of browsing by hare and reindeer on tall shrub species in 31 study plots at three alpine locations in the Scandes range, Sweden.

Results: Hare browsing was significantly more frequent than that by reindeer in two (dry-mesic heath and dry meadow) out of seven vegetation types studied. Reindeer browsing was significantly higher in the low herb meadow and Långfjället shrub heath. Two shrub species, Betula nana and Salix hastata, were significantly more browsed by hare, while reindeer browsing was significantly higher on S. phylicifolia and S. lapponum.

Conclusions: Our results show that mountain hares can cause extensive damage to tall shrubs in the subarctic and may have a stronger impact on shrub communities than previously recognised.  相似文献   

375.
To examine the effects of hybridization and environmental stress on developmental instability, we examined fluctuating asymmetry (FA), the variance in random deviations from perfect symmetry in bilaterally symmetrical traits, for leaf symmetry in a Salix hybrid system. An abiotic environmental stress (water stress), an interspecific biotic stress (pathogen attack), and an intraspecific biotic stress (competition) were examined to determine which factors increase developmental instability. None of these three environmental stressors significantly increased FA. However, genetic stress through hybridization was detected; hybrid plants showed significantly higher levels of FA than parental species. In contrast to hybridization providing greater developmental stability through heterozygosity, these results suggest that complex, nonadditive interactions provided developmental stability and that developmental instability increased when coadapted gene complexes were disrupted through hybridization. In addition, plant biomass was significantly, negatively correlated with FA, suggesting that those individuals that were more able to buffer themselves against the disruptive effects of environmental stress may have a selective advantage over those that are less able to buffer themselves against these disruptive effects.  相似文献   
376.
Abstract

In a greenhouse experiment, plant growth and copper (Cu) and zinc (Zn) uptake by four Salix cultivars grown in Cu and Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The cultivars displayed tolerance to heavily contaminated soils throughout the experiment. After uptake, total mean Cu concentrations in the leaves, shoots and roots in all cultivars and treatments ranged from 163 to 474?mg kg?1 and mean Zn concentrations ranged from 776 to 1823?mg kg?1. Lime and wood ash addition increased dry biomass growth (25–43%), chlorophyll fluorescence (Fv/Fm) values (3–6%), the translocation factor (TF) (15–60% for Cu; 10–25% for Zn), the bio-concentration factor (BCF) (40–85% for Cu; 70–120% for Zn), and metal uptake (55–70% for Cu; 50–65% for Zn) compared to unamended treatment across all cultivars. The results revealed that Salix cultivars have the potential to take up and accumulate significant amounts of Cu and Zn. Cultivar Klara (Salix viminalis × S. schwerinii × S. dasyclados) was found to be the most effective cultivar for phytoextraction since it displayed greater dry biomass production, Fv/Fm, TF, BCF values and uptake percentage rates of Cu and Zn compared to the other three cultivars. This study indicates that further research is needed to clarify the wider phytoextraction capabilities of different Salix cultivars.  相似文献   
377.
Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.  相似文献   
378.
徐婷  赵成章  韩玲  郑慧玲  冯威  段贝贝 《生态学报》2017,37(10):3335-3343
植物叶水势和中脉性状是反映叶片水力特性的主要参数,二者之间的关联性对理解植物水分供需平衡的生态适应策略具有重要意义。选择张掖市黑河干流边缘的洪泛平原湿地为实验地,以河岸为起点沿平行河岸线的方向依次设置近水区(样地Ⅰ)、中水区(样地Ⅱ)和远水区(样地Ⅲ)3个水分梯度样地,采用标准化主轴估计方法(standardized major axis estimation,SMA),研究了对水分影响下旱柳(Salix matsudana)叶水势与中脉性状之间的关系。结果表明:随着土壤含水量减少,旱柳林的高度、密度和郁闭度均持续降低,旱柳叶片的中脉密度、净光合速率(Pn)、蒸腾速率(Tr)、光合有效辐射(PAR)和叶片温度(Tleaf)逐渐增加,中脉直径、比叶面积及叶水势、叶绿素含量逐渐减少;不同土壤含水量样地旱柳叶水势与中脉性状间的相关性存在差异(P0.05),在样地Ⅰ和样地Ⅲ叶水势与中脉密度呈极显著负相关关系(P0.01),在样地Ⅱ两者之间呈显著负相关关系(P0.05);旱柳叶水势与中脉直径在3个水分梯度样地均呈显著正相关关系(P0.05)。随着湿地土壤含水量减少,旱柳采取降低叶水势、增加中脉密度并减少中脉直径的资源投资策略,反映了该物种在异质生境中具有较强的叶片性状可塑性,从而有利于其适应特殊的湿地生境。  相似文献   
379.
Abstract 1 We conducted two experiments to investigate why a basket willow Salix viminalis L. genotype, known to be highly resistant to the leaf-roller gall midge Dasineura marginemtorquens (Bremi), should support very high gall densities in a field plantation at Tälle, south Sweden.
2 The first experiment was a field test of the hypothesis of fine-scale host adaptation in the gall midge/willow system. Support for the hypothesis would be established if midges originating from resistant willows and those originating from nearby susceptible willows differed in their abilities to initiate galls and complete development on resistant plants.
3 The objective of the second experiment was to explore whether there was a genetic basis to the trait for virulence in the midge population and to investigate any potential trade-offs this trait may entail.
4 Our results indicate that there was a fine-scaled microgeographic genetic structure to the midge population at Tälle. Midges originating from resistant plants had a heritable trait that enabled them to establish galls on resistant plants.
5 Midges able to initiate galls on the resistant genotype had longer developmental time on the susceptible genotype. This suggests that there is a physiological cost associated with being adapted to the resistant willow genotype.
6 We suggest that driving forces behind the observed host adaptation are selection imposed on the midge population by very strong willow resistance and restricted gene flow in the midge populations due to the special life history features of D. marginemtorquens .  相似文献   
380.
We studied the relationship between variation in age and shoot characteristics of the host plant Salix exigua Nuttall (coyote or sandbar willow) and the attack and survival of Euura sp. (an unnamed leaf-midrib galling sawfly). Variation in shoot characteristics resulted from reduced growth as willow ramets aged. Mean shoot length per ramet and mean longest leaf length per shoot decreased by 95% and 50% respectively between 1- and 9-year-old willow ramets. All measured shoot characteristics-shoot length, longest leaf length, number of leaves per shoot, and mean internode length-were significantly negatively correlated with ramet age (r 2 ranged from –0.23 to –0.41). Correlations between shoot characteristics were highly positive, indicating that plants also grew in a strongly integrated fashion (r 2 ranged from 0.54 to 0.85). Four hypotheses were examined to explain sawfly attack patterns. The host-plant hypothesis was supported in explaining enhanced larval sawfly survival through reduced plant resistance. As willow ramets aged, the probability of Euura sp. attack decreased over 10-fold, from 0.315 on 1-year-old ramets to 0.024 on 2- to 9-year-old ramets. As shoot length increased, the probability of sawfly attack increased over 100-fold, from 0.007 on shoots <100 mm, to 0.800 on shoots in the 1001–1100 mm shoot length class. These attack patterns occurred even though 1-year-old ramets and shoots >500 mm each represented less than 2% of the total shoots available for oviposition. Host plant induced mortality of the egg/early instar stage decreased by 50% on longer leaves and was the most important factor determining survival differences between vigorous and non-vigorous hosts. Sawfly attack was not determined by the resource distribution hypothesis. Although shoots <200 mm contained 82% of the total leaves available, they contained only 43% of the galls initiated. The attack pattern also was not explained by the gall volume hypothesis. Although gall volume increased on longer shoots, there was no significant variation in mid or late instar mortality over shoot length, as would be expected if food resources within smaller galls were limited. The natural enemy attack hypothesis could not explain the pattern of oviposition since predation was greater on longer shoots and leaves. In addition, larval survival was related to oviposition behavior. Due to a 69% reduction in late instar death and an 83% reduction in parasitism, survival of progeny in galls initiated close to the petiole base was 2.8 times greater than in galls initiated near the leaf tip. A 75% reduction in gall volume over this range of gall positions may account for the observed increases in late instar mortality and parasitism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号