首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   79篇
  国内免费   232篇
  1999篇
  2023年   13篇
  2022年   14篇
  2021年   36篇
  2020年   43篇
  2019年   42篇
  2018年   27篇
  2017年   38篇
  2016年   49篇
  2015年   42篇
  2014年   56篇
  2013年   179篇
  2012年   47篇
  2011年   54篇
  2010年   59篇
  2009年   88篇
  2008年   97篇
  2007年   97篇
  2006年   92篇
  2005年   70篇
  2004年   79篇
  2003年   73篇
  2002年   64篇
  2001年   55篇
  2000年   53篇
  1999年   71篇
  1998年   80篇
  1997年   62篇
  1996年   39篇
  1995年   32篇
  1994年   44篇
  1993年   27篇
  1992年   31篇
  1991年   17篇
  1990年   12篇
  1989年   12篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   13篇
  1984年   18篇
  1983年   15篇
  1982年   19篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
排序方式: 共有1999条查询结果,搜索用时 0 毫秒
91.
A xylose-utilizing bacterial strain was isolated from soil.

The strain, No. 553, was identified as Enterobacter liquefaciens from the result of the taxonomical studies. This bacterium grew well on D-xylose as a sole carbon source and accumulated pentitol extracellularly in shaking culture.

Pentitol produced was isolated from the culture broth and identified as xylitol.

The xylitol production reached the maximum after the cessation of the cell growth with a yield of 33.3 mg per ml in a medium containing 10% D-xylose as a sole carbon source and no significant decline of the amount of xylitol was observed through the period of the cultivation.  相似文献   
92.
UDP-galactose 4-epimerase (EC 5.1.3.2, Gal E) from Escherichia coli catalyzes the reversible reaction between UDP-galactose and UDP-glucose. In this study, the Gal E gene from E. coli, coding UDP-galactose 4-epimerase, was cloned into pYD1 plasmid and then transformed into Saccharomyces cerevisiae EBY100 for expression of Gal E on the cell surface. Enzyme activity analyses with EBY100 cells showed that the enzyme displayed on the yeast cell surface was very active in the conversion between UDP-Glc and UDP-Gal. It took about 3 min to reach equilibrium from UDP-galactose to UDP-glucose.  相似文献   
93.
94.
The dissociation of wheat glutenin into subunits was observed by treatment with a small amount of mercuric chloride under moderate conditions, suggesting that the cleavage of inter-polypeptide chain disulfide bonds in the glutenin might occur. The dissociation into the subunits was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The electrophoretic patterns of the glutenin treated with mercuric chloride were essentially similar to those of the glutenin treated with 2-mercaptoethanol. Silver nitrate also had the same effects as mercuric chloride, and p-chloromercuribenzoate and N-ethylmaleimide showed no effect on the dissociation of the glutenin. Complete dissociation was achieved when the glutenin solution containing 0.5% SDS and 0.01 m phosphate buffer (pH 7.0) was incubated with 10?3 m mercuric chloride (about four moles per mole of disulfide groups) at 30°C for 20 hr. Partial dissociation was also observed after 30 min incubation. Increasing temperature and SDS concentration promoted the rate of the dissociation of the glutenin by mercuric chloride.  相似文献   
95.
96.
The structure of the xyloglucan synthesised in vitro by the particulate fraction of suspension-cultured soybean (Glycine max) cells from UDP-glucose and UDP-xylose is mainly composed of two kinds of oligosaccharide-building blocks, a heptasaccharide unit and a pentassaccharide unit [T. Hayashi and K. Matsuda, J. Biol Chem., 256, 11117 (1981)]. The synthesis of the pentasaccharide unit is probably the first step in the construction of oligosaccharide building blocks to elongate the ²-1,4-glucan backbone. This enzymatically synthesized xyloglucan was shown to have the same molecular size (Mw, 180,000) as the xyloglucan prepared from soybean cell walls by gel filtration on a Sepharose CL-6B column, and the same building blocks distributed among each fraction. A pulse-chase experiment indicated that the pentasaccharide unit was converted into the heptasaccharide unit. The conversion was regulated by the concentration of UDP-xylose.  相似文献   
97.
A Streptomyces-pepsin inhibitor (S-PI or Pepstatin Ac), and DAN-insensitive carboxyl proteinase was found in a still culture filtrate of Lentinus edodes. The new carboxyl proteinase was purified, and about 9 mg purified enzyme was obtained from 19 liters of culture filtrate, with 11% recovery. The enzyme showed a single band on polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were 40,000 and pH 4.2, respectively. The enzyme did not contain histidine and was composed of 387 amino acid residues. The enzyme was most active between pH 2.7 ~ 2.9, and stable over a pH of 3.2 ~ 5.2 for 3 hr at 37°C. The enzyme was not inhibited by S-PI or synthetic pepsin inhibitors such as DAN and EPNP. The physicochemical and enzymological properties were very similar to those of Scytalidium lignicolum carboxyl proteinase A, which was reported to be an S-PI-, and DAN-insensitive carboxyl proteinase.  相似文献   
98.
Compared with ethanol, butanol has more advantageous physical properties as a fuel, and biobutanol is thus considered a promising biofuel material. Biobutanol has often been produced by Clostridium species; however, because they are strictly anaerobic microorganisms, these species are challenging to work with. We attempted to introduce the butanol production pathway into yeast Saccharomyces cerevisiae, which is a well-known microorganism that is tolerant to organic solvents. 1-Butanol was found to be produced at very low levels when the butanol production pathway of Clostridium acetobutylicum was simply introduced into S. cerevisiae. The elimination of glycerol production pathway in the yeast contributed to the enhancement of 1-butanol production. In addition, by the use of trans-enoyl-CoA reductase in the engineered pathway, 1-butanol production was markedly enhanced to yield 14.1 mg/L after 48 h of cultivation.  相似文献   
99.
Cytochrome P450 (P450 or CYP) monooxygenases play an important role in the oxidation of a number of lipophilic substrates including secondary metabolites in higher plants. Larkin reported that CYP78A1 was preferentially expressed in developing inflorescences of Zea mays (Larkin, Plant Mol. Biol. 25: 343-353, 1994). However, the enzymatic function of CYP78A1 hasn’t been clarified yet. To characterized the enzymatic activity of CYP78A1, in this study, CYP78A1 cDNA and tobacco or yeast NADPH-cytochrome P450 oxidoreductase (P450 reductase) was expressed in the yeast Saccharomyces cerevisiae AH22 cells under the control of alcohol dehydrogenase promoter I and terminator. The reduced CO-difference spectrum of a microsomal fraction prepared from the transformed yeast cells expressing CYP78A1 and yeast P450 reductase showed a peak at 449 nm. Based on the spectrum, the content of a P450 molecule was estimated to be 45 pmol P450 equivalent/mg of protein in the microsomal fraction. The recombinant yeast microsomes containing CYP78A1 and yeast P450 reductase were found to catalyze 12-monooxygenation of lauric acid. Based on these results, CYP78A1 preferentially expressed in developing inflorescences of Zea mays appeared to have participated in the monooxygenation of fatty acids.  相似文献   
100.
The equilibrium moisture contents of sun-cured (Kroumougrad), flue-cured (Bright Yellow—4) and air-cured (Burley-21 and Matsukawa) tobaccos were measured over a relative humidity range from 5 to 80% at 20°C. The moisture sorption isotherms of tobaccos were of sigmoid type, and classified into two groups. In a lower humidity range below ca. 40% RH, the A group (Kroumougrad and BY-4) had a smaller moisture sorption capacity than B group (Burley-21 and Matsukawa), while in a higher humidity range above ca. 50% RH the former had a larger moisture sorption capacity than the latter. By extracting with water, the moisture content of BY-4 was increased in the lower humidity range, while it decreased in the higher humidity range. However, the moisture content of Matsukawa was scarecely changed by extracting it with water. These results suggest that the differences in equilibrium moisture content with the type of curing were due to the differences in contents of water soluble com- ponents. To control the hygroscopic properties of a tobacco, therefore, the influences of the addition of sucrose and glycerol on the equilibrium moisture content were quantitatively analysed. The moisture sorption capacity of tobacco was greatly different from its nitrogen sorption capacity. The specific surface area of tobacco calculated from moisture sorption isotherm was ca. 110 times larger than the specific surface area calculated from the nitrogen sorption isotherm. Both the nitrogen and moisture sorption data should be necessary for better understanding of the complicated sorption-desorption phenomena in tobaccos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号