首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1688篇
  免费   79篇
  国内免费   232篇
  1999篇
  2023年   13篇
  2022年   14篇
  2021年   36篇
  2020年   43篇
  2019年   42篇
  2018年   27篇
  2017年   38篇
  2016年   49篇
  2015年   42篇
  2014年   56篇
  2013年   179篇
  2012年   47篇
  2011年   54篇
  2010年   59篇
  2009年   88篇
  2008年   97篇
  2007年   97篇
  2006年   92篇
  2005年   70篇
  2004年   79篇
  2003年   73篇
  2002年   64篇
  2001年   55篇
  2000年   53篇
  1999年   71篇
  1998年   80篇
  1997年   62篇
  1996年   39篇
  1995年   32篇
  1994年   44篇
  1993年   27篇
  1992年   31篇
  1991年   17篇
  1990年   12篇
  1989年   12篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   13篇
  1984年   18篇
  1983年   15篇
  1982年   19篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
排序方式: 共有1999条查询结果,搜索用时 0 毫秒
51.
We screened for mutations that resulted in lethality when the G1 cyclin Cln2p was overexpressed throughout the cell cycle in Saccharomyces cerevisiae. Mutations in five complementation groups were found to give this phenotype, and three of the mutated genes were identified as MEC1, NUP170, and CDC14. Mutations in CDC14 may have been recovered in the screen because Cdc14p may reduce the cyclin B (Clb)-associated Cdc28 kinase activity in late mitosis, and Cln2p may normally activate Clb-Cdc28 kinase activity by related mechanisms. In agreement with the idea that cdc14 mutations elevate Clb-Cdc28 kinase activity, deletion of the gene for the Clb-Cdc28 inhibitor Sic1 caused synthetic lethality with cdc14-1, as did the deletion of HCT1, which is required for proteolysis of Clb2p. Surprisingly, deletion of the gene for the major B-type cyclin, CLB2, also caused synthetic lethality with the cdc14-1 mutation. The clb2 cdc14 strains arrested with replicated but unseparated DNA and unseparated spindle pole bodies; this phenotype is distinct from the late mitotic arrest of the sic1::TRP1 cdc14-1 and the cdc14-1 hct1::LEU2 double mutants and of the cdc14 CLN2 overexpressor. We found genetic interactions between CDC14 and the replication initiator gene CDC6, extending previous observations of interactions between the late mitotic function of Cdc14p and control of DNA replication. We also describe genetic interactions between CDC28 and CDC14. Received: 24 May 1999 / Accepted: 19 October 1999  相似文献   
52.
PMR1, the Ca2+/Mn2+ ATPase of the secretory pathway in Saccharomyces cerevisiae was the first member of the secretory pathway Ca2+ ATPases (SPCA) to be characterized. In the past few years, pmr1Delta yeast have received more attention due to the recognition that the human homologue of this protein, hSPCA1 is defective in chronic benign pemphigus or Hailey-Hailey disease (HHD). Recent publications have described pmr1Delta S. cerevisiae as a useful model organism for studying the molecular pathology of HHD. Some observations indicated that the high Ca2+ sensitive phenotype of PMR1 defective yeast strains may be the most relevant in this respect. Here we show that the total cellular calcium response of a pmr1Delta S. cerevisiae upon extracellular Ca2+ challenge is decreased compared to the wild type strain similarly as observed in keratinocytes. Additionally, the novel magnesium sensitivity of PMR1 defective yeast is revealed, which appears to be a result of competition for uptake between Ca2+ and Mg2+ at the plasma membrane level. Our findings indicate that extracellular Ca2+ and Mg2+ competitively influence the intracellular Ca2+ homeostasis of S. cerevisiae. These observations may further our understanding of HHD.  相似文献   
53.
用废啤酒酵母吸附水溶液中Cu2+,考察了溶液pH值、Cu2+浓度和吸附时间对Cu2+吸附的影响。结果表明:废啤酒酵母吸附Cu2+在4-6个小时内达到吸附平衡,酸性条件利于吸附,以pH为5时最佳,吸附等温曲线符合Langmuir模式。用电位滴定及FTIR分析的方法确定生物吸附剂主要含有磺酸基、羧基及氨基等功能团。生物吸附剂对Cu2+的吸附以单分子层的化学吸附为主,功能团在不同的pH条件下呈现不同的电离性能,在吸附过程中发挥重要作用。  相似文献   
54.
A new simple method for the preparation of chemically crosslinked chitosan beads is presented. It consists of the dropwise addition of 2-3% (w/v) low molecular weight chitosan solution containing 2% (w/v) glyoxal in 1% (w/v) tetrasodiumdiphosphate, pH 8.0. Immobilized viable baker's yeast (Saccharomyces cerevisiae) could be obtained via gel entrapment within the new beads when means preventing their direct contact with soluble chitosan were provided, "disguising" the cells until gelation and crosslinking were completed. Such means included cell suspension in castor oil or mixing with carboxymethyl-cellulose powder. Application of these means was shown to be necessary, as cells exposed to soluble chitosan immediately lost their viability and glycolytic activity. Yeast disguised in castor oil was also protected from bead reinforcement by glutaraldehyde treatment, significantly strengthening bead stability while operating under acidic conditions. This capability was demonstrated by continuous ethanol production by chitosan entrapped yeast. (c) 1994 John Wiley & Sons, Inc.  相似文献   
55.
We constructed a plasmid that expresses FLO11 encoding a cell surface glycoprotein of Saccharomyces cerevisiae under the control of a constitutive promoter. This plasmid conferred pellicle-forming ability on the non-pellicle-forming industrial strain of S. cerevisiae at the air–liquid interface of the glucose-containing liquid medium. The induced pellicle-forming cells exhibited tolerance to furfural, which is a key toxin in lignocellulosic hydrolysates, in ethanol production.  相似文献   
56.
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.  相似文献   
57.
The potential of several alternative genetic engineering based strategies in order to accelerate Saccharomyces cerevisiae autolysis for wine production has been studied. Both constitutively autophagic and defective in autophagy strains have been studied. Although both alternatives lead to impaired survival under starvation conditions, only constitutively autophagic strains, carrying a multicopy plasmid with the csc1-1 allele under the control of the TDH3 promoter, undergo accelerated autolysis in the experimental conditions tested. Fermentation performance is impaired in the autolytic strains, but industrial strains carrying the above-mentioned construction are still able to complete second fermentation of a model base wine. We suggest the construction of industrial yeasts showing a constitutive autophagic phenotype as a way to obtain second fermentation yeast strains undergoing accelerated autolysis.  相似文献   
58.
59.
Abstract cAMP-dependent phosphoprotein changes were determined using 1-dimensional SDS-gel electrophoresis in a cAMP-requiring yeast mutant ( Saccharomyces cerevisiae AM18). During cAMP starvation, the yeast cells accumulated 3 32P-labeled bands with M r/ 72000, 54000, and 37000. The M r/ 72000 protein was the most prominent phosphorylated protein. After the readdition of cAMP, these phosphoproteins lost their 32P-label while phosphoproteins with M r/ 76000, 65000, 56000 and 30000 were accumulated. Similar phosphoprotein changes were also detected in cdc35 at the nonpermissive temperature, but not in wildtype (A363A) or cdc7 strains of S. cerevisiae .  相似文献   
60.
 高渗透性甘油促分裂原激酶信号转导途径(high osmolarity glycerol mitogen activated protein kinase signaling transduction pathway,HOG-MAPK)是调控酿酒酵母对外界高渗透压胁迫环境应答的主要途径,促分裂原蛋白激酶Hog1p(MAPK Hog1p)是其中的关键性作用因子.在高渗透压刺激时,MAPK Hog1p接受信号被特异性激活并进入核内,调控相关胁迫应答基因的表达,并介导该时期细胞周期的阻滞,从而增强细胞对外界不利环境的适应能力.对胁迫条件下酿酒酵母中MAPK Hog1p作用机制的进一步研究,有利于更深入地了解哺乳动物体内逆境激发促分裂原蛋白激酶途径的功能和调控机制.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号