首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2930篇
  免费   127篇
  国内免费   97篇
  2023年   41篇
  2022年   47篇
  2021年   43篇
  2020年   58篇
  2019年   216篇
  2018年   100篇
  2017年   115篇
  2016年   144篇
  2015年   166篇
  2014年   245篇
  2013年   207篇
  2012年   85篇
  2011年   105篇
  2010年   81篇
  2009年   121篇
  2008年   99篇
  2007年   127篇
  2006年   125篇
  2005年   97篇
  2004年   84篇
  2003年   87篇
  2002年   81篇
  2001年   53篇
  2000年   50篇
  1999年   48篇
  1998年   35篇
  1997年   37篇
  1996年   43篇
  1995年   26篇
  1994年   33篇
  1993年   25篇
  1992年   20篇
  1991年   22篇
  1990年   23篇
  1989年   14篇
  1988年   15篇
  1987年   23篇
  1986年   9篇
  1985年   27篇
  1984年   35篇
  1983年   27篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   9篇
  1978年   9篇
  1977年   10篇
  1975年   6篇
  1973年   7篇
  1972年   5篇
排序方式: 共有3154条查询结果,搜索用时 390 毫秒
971.
Tobacco callus grown under shoot-forming conditions or in the presence of gibberellic acid, which inhibits shoot formation, was incubated in [14C]-sucrose at three different periods in culture and then replanted. Evolution of 14CO2 occurred during the 10 day post-incubation period. Most of the radioactivity was incorporated into the ethanol-soluble fraction, which lost most of its label after 24 h. Starch was the major ethanol-insoluble component and post-incubation synthesis occurred in this fraction for 24 h or longer. Greater net synthesis of starch occurred in shoot-forming tissue and the loss of label from starch began later than in tissue cultured in the presence of gibbe-rellic acid. Newly synthesized starch was not immediately utilised in the organogenic process, but its utilization could be correlated with the shoot-forming process.  相似文献   
972.
Morphotypes for 67 lakes in the German lowlands were derived, based on maximum depth and mixis type. A threshold of 11 m maximum depth was identified to be the best level to discriminate shallow from deep lake morphotypes. The fish communities in these two morphotypes were significantly different. Indicator species analyses based on fish biomasses found vendace Coregonus albula in deep lakes and ruffe Gymnocephalus cernuus , bream Abramis brama , white bream Abramis bjoerkna , roach Rutilus rutilus , pikeperch Sander lucioperca and small perch Perca fluviatilis in shallow lakes to be the most representative species of their communities. Lake productivity was closely related to biomass and in part abundance of the type‐indicator species, with vendace declining with increasing chlorophyll a concentration in the deep lakes, whereas biomass of pikeperch, bream, white bream and ruffe increased and biomass of small perch decreased with increasing chlorophyll a . These results indicate that assessment of ecological integrity of lakes by their fish fauna is generally possible, if lakes are initially separated according to a depth‐related morphotype before the assessment, and if eutrophication is considered to be the main anthropogenic degradation.  相似文献   
973.
974.
In situ 14C uptake (dawn to dusk) and fast repetition rate fluorometry (FRRF) measurements at nearly monthly intervals were compared at Station ALOHA (22°45′N, 158°00′W) between August 2002 and September 2003 in order to determine the feasibility of using FRRF profiling as a means for estimating primary production (PP). The FRRF and 14C rates were significantly correlated (r2=0.906, P value <0.05, n=70) with slopes of 2.00 and 1.90 for chl a and light normalized data, respectively. However, the relationship between 14C‐ and FRRF‐derived carbon fixation varied vertically and temporally. The FRRF: 14C ratio was >1.5 in near‐surface water (5–25 m depth) and approached 1.0 deeper in the euphotic zone. Vertical variations probably reflected the effect of different physiological processes (i.e. Mehler reaction, dark respiration, and excretion) on overall photoautotrophic respiration. In particular, the decrease in Mehler reaction rates with increasing water depth may have accounted for the decrease in difference between 14C and FRRF measurements with depth. The influence of in situ light field variability in controlling the absorption cross‐section of photosystem II (PSII) (σPSII′) may also have been responsible for some of this difference. When compared with total community respiration (R), the derived light‐driven photoautotrophic respiration (reported here as the difference between FRRF and 14C measurements) represented approximately 50% of R integrated over the euphotic zone. Our results show that FRRF and 14C measurements were well correlated in oligotrophic waters but the exact relationship between the two processes varies both temporally and vertically, such that a unique relationship between these two techniques could not be derived from first‐order principles.  相似文献   
975.
976.
The repeating unit of outer membrane beta-barrels from Gram-negative bacteria is the beta-hairpin, and representatives of this protein family always have an even strand number between eight and 22. Two dominant structural forms have eight and 16 strands, respectively, suggesting gene duplication as a possible mechanism for their evolution. We duplicated the sequence of OmpX, an eight-stranded beta-barrel protein of known structure, and obtained a beta-barrel, designated Omp2X, which can fold in vitro and in vivo. Using single-channel conductance measurements and PEG exclusion assays, we found that Omp2X has a pore size similar to that of OmpC, a natural 16-stranded barrel. Fusions of the homologous proteins OmpX, OmpA and OmpW were able to fold in vitro in all combinations tested, revealing that the general propensity to form a beta-barrel is sufficient to evolve larger barrels by simple genetic events.  相似文献   
977.
In the crystal structure of the 30S ribosomal subunit from Thermus thermophilus, cysteine 24 of ribosomal protein S14 (TthS14) occupies the first position in a CXXC-X12-CXXC motif that coordinates a zinc ion. The structural and functional importance of cysteine 24, which is widely conserved from bacteria to humans, was studied by its replacement with serine and by incorporating the resulting mutant into Escherichia coli ribosomes. The capability of such modified ribosomes in binding tRNA at the P and A-sites was equal to that obtained with ribosomes incorporating wild-type TthS14. In fact, both chimeric ribosomal species exhibited 20% lower tRNA affinity compared with native E. coli ribosomes. In addition, replacement of the native E. coli S14 by wild-type, and particularly by mutant TthS14, resulted in reduced capability of the 30S subunit for association with 50S subunits. Nevertheless, ribosomes from transformed cells sedimented normally and had a full complement of proteins. Unexpectedly, the peptidyl transferase activity in the chimeric ribosomes bearing mutant TthS14 was much lower than that measured in ribosomes incorporating wild-type TthS14. The catalytic center of the ribosome is located within the 50S subunit and, therefore, it is unlikely to be directly affected by changes in the structure of S14. More probably, the perturbing effects of S14 mutation on the catalytic center seem to be propagated by adjacent intersubunit bridges or the P-site tRNA molecule, resulting in weak donor-substrate reactivity. This hypothesis was verified by molecular dynamics simulation analysis.  相似文献   
978.
Rhinoviruses are the major causative agents of the common cold in humans. Here, we studied the stability of human rhinovirus type 14 (HRV14) under conditions of high hydrostatic pressure, low temperature, and urea in the absence and presence of an antiviral drug. Capsid dissociation and changes in the protein conformation were monitored by fluorescence spectroscopy, light scattering, circular dichroism, gel filtration chromatography, mass spectrometry and infectivity assays. The data show that high pressure induces the dissociation of HRV14 and that this process is inhibited by WIN 52084. MALDI-TOF mass spectrometry experiments demonstrate that VP4, the most internal viral protein, is released from the capsid by pressure treatment. This release of VP4 is concomitant with loss of infectivity. Our studies also show that at least one antiviral effect of the WIN drugs involves the locking of VP4 inside the capsid by blocking the dynamics associated with cell attachment.  相似文献   
979.
A complex mathematical model of the human menstrual cycle   总被引:1,自引:1,他引:0  
Despite the fact that more than 100 million women worldwide use birth control pills and that half of the world's population is concerned, the menstrual cycle has so far received comparatively little attention in the field of mathematical modeling. The term menstrual cycle comprises the processes of the control system in the female body that, under healthy circumstances, lead to ovulation at regular intervals, thus making reproduction possible. If this is not the case or ovulation is not desired, the question arises how this control system can be influenced, for example, by hormonal treatments. In order to be able to cover a vast range of external manipulations, the mathematical model must comprise the main components where the processes belonging to the menstrual cycle occur, as well as their interrelations. A system of differential equations serves as the mathematical model, describing the dynamics of hormones, enzymes, receptors, and follicular phases. Since the processes take place in different parts of the body and influence each other with a certain delay, passing over to delay differential equations is deemed a reasonable step. The pulsatile release of the gonadotropin-releasing hormone (GnRH) is controlled by a complex neural network. We choose to model the pulse time points of this GnRH pulse generator by a stochastic process. Focus in this paper is on the model development. This rather elaborate mathematical model is the basis for a detailed analysis and could be helpful for possible drug design.  相似文献   
980.
Under drought stress, ABA promotes stomatal closure to prevent water loss. Although protein phosphorylation plays an important role in ABA signaling, little is known about these processes at the biochemical level. In this study, we searched for substrates of protein kinases in ABA signaling through the binding of a 14-3-3 protein to phosphorylated proteins using Vicia guard cell protoplasts. ABA induced binding of a 14-3-3 protein to proteins with molecular masses of 61, 43 and 39 kDa, with the most remarkable signal for the 61 kDa protein. The ABA-induced binding to the 61 kDa protein occurred only in guard cells, and reached a maximum within 3 min at 1 microM ABA. The 61 kDa protein localized in the cytosol. ABA induced the binding of endogenous vf14-3-3a to the 61 kDa protein in guard cells. Autophosphorylation of ABA-activated protein kinase (AAPK), which mediates anion channel activation, and ABA-induced phosphorylation of the 61 kDa protein showed similar time courses and similar sensitivities to the protein kinase inhibitor K-252a. AAPK elicits the binding of the 14-3-3 protein to the 61 kDa protein in vitro when AAPK in guard cells was activated by ABA. The phosphorylation of the 61 kDa protein by ABA was not affected by the NADPH oxidase inhibitor, H(2)O(2), W-7 or EGTA. From these results, we conclude that the 61 kDa protein may be a substrate for AAPK and that the 61 kDa protein is located upstream of H(2)O(2) and Ca(2+), or on Ca(2+)-independent signaling pathways in guard cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号