首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2193篇
  免费   17篇
  国内免费   2篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   26篇
  2014年   155篇
  2013年   317篇
  2012年   377篇
  2011年   450篇
  2010年   346篇
  2009年   24篇
  2008年   29篇
  2007年   32篇
  2006年   34篇
  2005年   18篇
  2004年   14篇
  2003年   24篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   27篇
  1996年   17篇
  1995年   9篇
  1994年   14篇
  1993年   12篇
  1992年   11篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   12篇
  1984年   14篇
  1983年   17篇
  1982年   16篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
排序方式: 共有2212条查询结果,搜索用时 31 毫秒
981.
In obesity, rapidly expanding adipose tissue becomes hypoxic, precipitating inflammation, fibrosis, and insulin resistance. Compensatory angiogenesis may prevent these events. Mice lacking the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1(-/-)) have "healthier" adipose tissue distribution and resist metabolic disease with diet-induced obesity. Here we show that adipose tissues of 11βHSD1(-/-) mice exhibit attenuated hypoxia, induction of hypoxia-inducible factor (HIF-1α) activation of the TGF-β/Smad3/α-smooth muscle actin (α-SMA) signaling pathway, and fibrogenesis despite similar fat accretion with diet-induced obesity. Moreover, augmented 11βHSD1(-/-) adipose tissue angiogenesis is associated with enhanced peroxisome proliferator-activated receptor γ (PPARγ)-inducible expression of the potent angiogenic factors VEGF-A, apelin, and angiopoietin-like protein 4. Improved adipose angiogenesis and reduced fibrosis provide a novel mechanism whereby suppression of intracellular glucocorticoid regeneration promotes safer fat expansion with weight gain.  相似文献   
982.
Dysferlin is a large transmembrane protein composed of a C-terminal transmembrane domain, two DysF domains, and seven C2 domains that mediate lipid- and protein-binding interactions. Recessive loss-of-function mutations in dysferlin lead to muscular dystrophies, for which no treatment is currently available. The large size of dysferlin precludes its encapsulation into an adeno-associated virus (AAV), the vector of choice for gene delivery to muscle. To design mini-dysferlin molecules suitable for AAV-mediated gene transfer, we tested internally truncated dysferlin constructs, each lacking one of the seven C2 domains, for their ability to localize to the plasma membrane and to repair laser-induced plasmalemmal wounds in dysferlin-deficient human myoblasts. We demonstrate that the dysferlin C2B, C2C, C2D, and C2E domains are dispensable for correct plasmalemmal localization. Furthermore, we show that the C2B, C2C, and C2E domains and, to a lesser extent, the C2D domain are dispensable for dysferlin membrane repair function. On the basis of these results, we designed small dysferlin molecules that can localize to the plasma membrane and reseal laser-induced plasmalemmal injuries and that are small enough to be incorporated into AAV. These results lay the groundwork for AAV-mediated gene therapy experiments in dysferlin-deficient mouse models.  相似文献   
983.
Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies.  相似文献   
984.
Activation of β(2)-adrenegic receptor (β(2)-AR) leads to an increase in intracellular cAMP and activation of ERK. These two signals are activated by the interaction of the receptor with different transducer partners. We showed that the intrinsic activities of β(2)-AR ligands for stimulating cAMP production and ERK phosphorylation responses in HEK-293 cells were not correlated. The lack of correlation resulted mainly from the discrepancy between the intrinsic activities of two groups of ligands for these two responses: The first group consisted of clenbuterol, cimaterol, procaterol, and terbutaline which acted as full agonists for cAMP production but displayed very weak effect on ERK phosphorylation. The second group comprised adrenaline and noradrenaline which displayed higher intrinsic activity for the ERK phosphorylation than for the cAMP response. Thus, both groups behaved as functionally selective ligands. The functional selectivity of the first group was observable only in adherent cells when confluence was approximately 100%. When cell-cell contact was minimized either by decreasing the density of the adherent cells or by bringing the cells into suspension, the first group of ligands gained the ability to stimulate ERK phosphorylation without a change in their effect on cAMP production. In contrast, selectivity of the second group was independent of the adherence state of the cells. Our results show that the inherent "bias" of ligands in coupling a G protein-coupled receptor to different transducers may not always be revealed as functional selectivity when there is a "cross-talk" between the signaling pathways activated by the same receptor.  相似文献   
985.
Several point mutations in rhodopsin cause retinal diseases including congenital stationary night blindness and retinitis pigmentosa. The mechanism by which a single amino acid residue substitution leads to dysfunction is poorly understood at the molecular level. A G90D point mutation in rhodopsin causes constitutive activity and leads to congenital stationary night blindness. It is unclear which perturbations the mutation introduces and how they can cause the receptor to be constitutively active. To reveal insight into these mechanisms, we characterized the perturbations introduced into dark state G90D rhodopsin from a transgenic mouse model expressing exclusively the mutant rhodopsin in rod photoreceptor cells. UV-visible absorbance spectroscopy revealed hydroxylamine accessibility to the chromophore-binding pocket of dark state G90D rhodopsin, which is not detected in dark state wild-type rhodopsin but is detected in light-activated wild-type rhodopsin. Single-molecule force spectroscopy suggested that the structural changes introduced by the mutation are small. Dynamic single-molecule force spectroscopy revealed that, compared with dark state wild-type rhodopsin, the G90D mutation decreased energetic stability and increased mechanical rigidity of most structural regions in the dark state mutant receptor. The observed structural, energetic, and mechanical changes in dark state G90D rhodopsin provide insights into the nature of perturbations caused by a pathological point mutation. Moreover, these changed properties observed for dark state G90D rhodopsin are consistent with properties expected for an active state.  相似文献   
986.
Phosphatidylinositol transfer proteins (PITPs) are versatile proteins required for signal transduction and membrane traffic. The best characterized mammalian PITPs are the Class I PITPs, PITPα (PITPNA) and PITPβ (PITPNB), which are single domain proteins with a hydrophobic cavity that binds a phosphatidylinositol (PI) or phosphatidylcholine molecule. In this study, we report the lipid binding properties of an uncharacterized soluble PITP, phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) (alternative name, RdgBβ), of the Class II family. We show that the lipid binding properties of this protein are distinct to Class I PITPs because, besides PI, RdgBβ binds and transfers phosphatidic acid (PA) but hardly binds phosphatidylcholine. RdgBβ when purified from Escherichia coli is preloaded with PA and phosphatidylglycerol. When RdgBβ was incubated with permeabilized HL60 cells, phosphatidylglycerol was released, and PA and PI were now incorporated into RdgBβ. After an increase in PA levels following activation of endogenous phospholipase D or after addition of bacterial phospholipase D, binding of PA to RdgBβ was greater at the expense of PI binding. We propose that RdgBβ, when containing PA, regulates an effector protein or can facilitate lipid transfer between membrane compartments.  相似文献   
987.
Microtubule plus-end-tracking proteins (+TIPs) specifically localize to the growing plus-ends of microtubules to regulate microtubule dynamics and functions. A large group of +TIPs contain a short linear motif, SXIP, which is essential for them to bind to end-binding proteins (EBs) and target microtubule ends. The SXIP sequence site thus acts as a widespread microtubule tip localization signal (MtLS). Here we have analyzed the sequence-function relationship of a canonical MtLS. Using synthetic peptide arrays on membrane supports, we identified the residue preferences at each amino acid position of the SXIP motif and its surrounding sequence with respect to EB binding. We further developed an assay based on fluorescence polarization to assess the mechanism of the EB-SXIP interaction and to correlate EB binding and microtubule tip tracking of MtLS sequences from different +TIPs. Finally, we investigated the role of phosphorylation in regulating the EB-SXIP interaction. Together, our results define the sequence determinants of a canonical MtLS and provide the experimental data for bioinformatics approaches to carry out genome-wide predictions of novel +TIPs in multiple organisms.  相似文献   
988.
Heterotrimeric G proteins, consisting of Gα, Gβ, and Gγ subunits, play important roles in plant development and cell signaling. In Arabidopsis, in addition to one prototypical G protein α subunit, GPA1, there are three extra-large G proteins, XLG1, XLG2, and XLG3, of largely unknown function. Each extra-large G (XLG) protein has a C-terminal Gα-like region and a ~400 amino acid N-terminal extension. Here we show that the three XLG proteins specifically bind and hydrolyze GTP, despite the fact that these plant-specific proteins lack key conserved amino acid residues important for GTP binding and hydrolysis of GTP in mammalian Gα proteins. Moreover, unlike other known Gα proteins, these activities require Ca(2+) instead of Mg(2+) as a cofactor. Yeast two-hybrid library screening and in vitro protein pull-down assays revealed that XLG2 interacts with the nuclear protein RTV1 (related to vernalization 1). Electrophoretic mobility shift assays show that RTV1 binds to DNA in vitro in a non-sequence-specific manner and that GTP-bound XLG2 promotes the DNA binding activity of RTV1. Overexpression of RTV1 results in early flowering. Combined overexpression of XLG2 and RTV1 enhances this early flowering phenotype and elevates expression of the floral pathway integrator genes, FT and SOC1, but does not repress expression of the floral repressor, FLC. Chromatin immunoprecipitation assays show that XLG2 increases RTV1 binding to FT and SOC1 promoters. Thus, a Ca(2+)-dependent G protein, XLG2, promotes RTV1 DNA binding activity for a subset of floral integrator genes and contributes to floral transition.  相似文献   
989.
CDK2AP1 (cyclin-dependent kinase 2-associated protein 1), corresponding to the gene doc-1 (deleted in oral cancer 1), is a tumor suppressor protein. The doc-1 gene is absent or down-regulated in hamster oral cancer cells and in many other cancer cell types. The ubiquitously expressed CDK2AP1 protein is the only known specific inhibitor of CDK2, making it an important component of cell cycle regulation during G(1)-to-S phase transition. Here, we report the solution structure of CDK2AP1 by combined methods of solution state NMR and amide hydrogen/deuterium exchange measurements with mass spectrometry. The homodimeric structure of CDK2AP1 includes an intrinsically disordered 60-residue N-terminal region and a four-helix bundle dimeric structure with reduced Cys-105 in the C-terminal region. The Cys-105 residues are, however, poised for disulfide bond formation. CDK2AP1 is phosphorylated at a conserved Ser-46 site in the N-terminal "intrinsically disordered" region by IκB kinase ε.  相似文献   
990.
The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号