首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2193篇
  免费   17篇
  国内免费   2篇
  2212篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   5篇
  2019年   8篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   26篇
  2014年   155篇
  2013年   317篇
  2012年   377篇
  2011年   450篇
  2010年   346篇
  2009年   24篇
  2008年   29篇
  2007年   32篇
  2006年   34篇
  2005年   18篇
  2004年   14篇
  2003年   24篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   17篇
  1998年   18篇
  1997年   27篇
  1996年   17篇
  1995年   9篇
  1994年   14篇
  1993年   12篇
  1992年   11篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   12篇
  1984年   14篇
  1983年   17篇
  1982年   16篇
  1981年   10篇
  1980年   6篇
  1979年   5篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1972年   4篇
排序方式: 共有2212条查询结果,搜索用时 0 毫秒
101.
Capillary zone electrophoresis (CZE) was investigated for its suitability to monitor proteinuria occurring during nephrotoxic drug therapy. Urine samples of tumor patients receiving chemotherapy consisting of carboplatin, etoposide, and ifosfamide were concentrated and desalted in microconcentrators and analyzed in two different alkaline CZE buffer systems. Reduction of electroosmotic flow (EOF) by the addition of putrescine increased the number of resolved protein peaks. Both CZE methods were linear between 2.5 and 50 μg/ml, exhibited satisfactory precision (relative standard deviation <10%) and were suitable for monitor the time course of proteinuria after chemotherapy administration. In contrast to sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), CZE detected interindividual differences in protein patterns. Whereas these differences hampered a direct quantification of proteins in urine, they may contain information on the type or extent of kidney damage.  相似文献   
102.
An enzyme-linked immunosorbent assay (ELISA)-elution assay was developed to screen a large variety of elution buffers for selection of a suitable one for purification of the fusion protein FV/TNF-α by affinity chromatography. Various commonly used buffer systems utilizing widely differing conditions such as extreme pH, denaturants, chaotropic ions and polarity reducing reagents were investigated. Ammonia solution (1 M, pH 11.5) proved to exert the most suitable influence on dissociation of the FV/TNF-α/TAG72 complex while having a minimal protein denaturing effect on FV/TNF-α. The total yield of purified FV/TNF-α using the TAG72-affinity column with this elution system was 300-fold higher than that using the common elution buffer, 0.1 M glycine, 0.5 M NaCl, pH 2.7. Our study indicates that the ELISA-elution assay will be most useful in the selection of suitable elution buffers for affinity chromatography.  相似文献   
103.
 Hyperhydricity in regenerated pepper plants was monitored by the induction of the ER-luminal resident protein, as observed by immunoblotting. Immunoblotting of total protein using an anti-soybean BiP serum indicated that the induction and accumulation of an 80-kDa protein was related to BiP (Binding protein), a 78-kDa ER-resident molecular chaperone. The anti-BiP serum cross-reacted with an 80-kDa protein which was significantly induced by hyperhydricity. Based on similar molecular weight and immunological reactivity we concluded that the 80-kDa protein induced in hyperhydric plants is a BiP homologue. The ultrastructural organisation of leaves in non-hyperhydric and hyperhydric pepper (Capsicum annuum L.) plants was investigated with the aim of identifying the subcellular changes associated with this phenomenon. In non-hyperhydric leaves the chloroplasts of the palisade cells had normally developed thylakoids and grana and a low accumulation or absence of starch grains and plastoglobules. In the hyperhydric plants, however, the chloroplasts exhibited thylakoid disorganisation, low grana number, an accumulation of large starch grains and a low accumulation or absence of plastoglobules. Although the structure of mitochondria and peroxisomes did not change in hyperhydric plants, the number of peroxisomes did increase. Received: 23 July 1998 / Revision received: 26 February 1999 / Accepted: 17 March 1999  相似文献   
104.
The gelsolin family of actin regulatory proteins is activated by Ca(2+) to sever and cap actin filaments. Gelsolin has six homologous gelsolin-like domains (G1-G6), and Ca(2+)-dependent conformational changes regulate its accessibility to actin. Caenorhabditis elegans gelsolin-like protein-1 (GSNL-1) has only four gelsolin-like domains (G1-G4) and still exhibits Ca(2+)-dependent actin filament-severing and -capping activities. We found that acidic residues (Asp-83 and Asp-84) in G1 of GSNL-1 are important for its Ca(2+) activation. These residues are conserved in GSNL-1 and gelsolin and previously implicated in actin-severing activity of the gelsolin family. We found that alanine mutations at Asp-83 and Asp-84 (D83A/D84A mutation) did not disrupt actin-severing or -capping activity. Instead, the mutants exhibited altered Ca(2+) sensitivity when compared with wild-type GSNL-1. The D83A/D84A mutation enhanced Ca(2+) sensitivity for actin severing and capping and its susceptibility to proteolytic digestion, suggesting a conformational change. Single mutations caused minimal changes in its activity, whereas Asp-83 and Asp-84 were required to stabilize Ca(2+)-free and Ca(2+)-bound conformations, respectively. On the other hand, the D83A/D84A mutation suppressed sensitivity of GSNL-1 to phosphatidylinositol 4,5-bisphosphate inhibition. The structure of an inactive form of gelsolin shows that the equivalent acidic residues are in close contact with G3, which may maintain an inactive conformation of the gelsolin family.  相似文献   
105.
Vascular endothelial cells (ECs) are continuously exposed to shear stress (SS) generated by blood flow. Such stress plays a key role in regulation of various aspects of EC function including cell proliferation and motility as well as changes in cell morphology. Vascular endothelial-protein-tyrosine phosphatase (VE-PTP) is an R3-subtype PTP that possesses multiple fibronectin type III-like domains in its extracellular region and is expressed specifically in ECs. The role of VE-PTP in EC responses to SS has remained unknown, however. Here we show that VE-PTP is diffusely localized in ECs maintained under static culture conditions, whereas it undergoes rapid accumulation at the downstream edge of the cells relative to the direction of flow in response to SS. This redistribution of VE-PTP triggered by SS was found to require its extracellular and transmembrane regions and was promoted by integrin engagement of extracellular matrix ligands. Inhibition of actin polymerization or of Cdc42, Rab5, or Arf6 activities attenuated the SS-induced redistribution of VE-PTP. VE-PTP also underwent endocytosis in the static and SS conditions. SS induced the polarized distribution of internalized VE-PTP. Such an effect was promoted by integrin engagement of fibronectin but prevented by inhibition of Cdc42 activity or of actin polymerization. In addition, depletion of VE-PTP by RNA interference in human umbilical vein ECs blocked cell elongation in the direction of flow induced by SS. Our results suggest that the polarized redistribution of VE-PTP in response to SS plays an important role in the regulation of EC function by blood flow.  相似文献   
106.
Vitamin K epoxide reductase complex subunit 1 (VKORC1) reduces vitamin K epoxide in the vitamin K cycle for post-translational modification of proteins that are involved in a variety of biological functions. However, the physiological function of VKORC1-like 1 (VKORC1L1), a paralogous enzyme sharing about 50% protein identity with VKORC1, is unknown. Here we determined the structural and functional differences of these two enzymes using fluorescence protease protection (FPP) assay and an in vivo cell-based activity assay. We show that in vivo VKORC1L1 reduces vitamin K epoxide to support vitamin K-dependent carboxylation as efficiently as does VKORC1. However, FPP assays show that unlike VKORC1, VKORC1L1 is a four-transmembrane domain protein with both its termini located in the cytoplasm. Moreover, the conserved loop cysteines, which are not required for VKORC1 activity, are essential for VKORC1L1''s active site regeneration. Results from domain exchanges between VKORC1L1 and VKORC1 suggest that it is VKORC1L1''s overall structure that uniquely allows for active site regeneration by the conserved loop cysteines. Intermediate disulfide trapping results confirmed an intra-molecular electron transfer pathway for VKORC1L1''s active site reduction. Our results allow us to propose a concerted action of the four conserved cysteines of VKORC1L1 for active site regeneration; the second loop cysteine, Cys-58, attacks the active site disulfide, forming an intermediate disulfide with Cys-139; the first loop cysteine, Cys-50, attacks the intermediate disulfide resulting in active site reduction. The different membrane topologies and reaction mechanisms between VKORC1L1 and VKORC1 suggest that these two proteins might have different physiological functions.  相似文献   
107.
The design and synthesis of a series of novel tricyclic IAP inhibitors is reported. Rapid assembly of the core tricycle involved two key steps: Rh-catalyzed hydrogenation of an unsaturated bicyclic ring system and a Ru-catalyzed ring closing alkene metathesis reaction. The final Smac mimetics bind to cIAP1 and XIAP BIR3 domains and elicit the desired phenotype in cellular proliferation assays. Dimeric IAP inhibitors were found to possess nanomolar potency in a cellular proliferation assay and favourable in vitro drug-like properties.  相似文献   
108.
The molecular mechanisms of protein inactivation, i.e. aggregation, thiol-disulphide exchange, alteration of the primary structure, dissociation of cofactor molecules from the active centre, dissociation of the oligomeric proteins into subunits and conformational changes have been analysed. All these mechanisms are closely interrelated during inactivation of proteins. However, in many cases, the conformational changes accompany and trigger other inactivation processes. Reactivation of irreversibly inactivated proteins is·discussed. Reactivation can be successful when inactivation has been caused by aggregation, modification of SH-groups (or S-S bonds) or as a consequence of irreversible conformational changes.  相似文献   
109.
Potassium channels are tetrameric membrane-spanning proteins that provide a selective pore for the conduction of K(+) across the cell membranes. One of the main physiological functions of potassium channels is efficient and very selective transport of K(+) ions through the membrane to the cell. Classical views of ion selectivity are summarized within a historical perspective, and contrasted with the molecular dynamics (MD) simulations free energy perturbation (FEP) performed on the basis of the crystallographic structure of the KcsA phospholipid membrane. The results show that the KcsA channel does not select for K(+) ions by providing a binding site of an appropriate (fixed) cavity size. Rather, selectivity for K(+) arises directly from the intrinsic local physical properties of the ligands coordinating the cation in the binding site, and is a robust feature of a pore symmetrically lined by backbone carbonyl groups. Further analysis reveals that it is the interplay between the attractive ion-ligand (favoring smaller cation) and repulsive ligand-ligand interactions (favoring larger cations) that is the basic element governing Na(+)/K(+) selectivity in flexible protein binding sites. Because the number and the type of ligands coordinating an ion directly modulate such local interactions, this provides a potent molecular mechanism to achieve and maintain a high selectivity in protein binding sites despite a significant conformational flexibility.  相似文献   
110.
In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号